

Civil Engineers, Surveyors & Land Development Consultants

Post Construction Stormwater Management Report For

438 Webb Road Chadds Ford, PA 19317

Chadds Ford Township, Delaware County

January 15, 2024

Prepared on Behalf of:	Jennifer Devlin
	438 Webb Road
	Chadds Ford, Pa 19317

- Prepared By: InLand Design, LLC 16 Hagerty Boulevard West Chester, PA 19382 Inland Design Project No. 11711
- Plan Reference:Preliminary/Final Subdivision Plan for 438 Webb RoadDated 01/15/2024 or last revised.

Table of Contents

Section 1

Introduction Existing Conditions Narrative Proposed Development Narrative Water Supply Facilities Sanitary Sewer Facilities Soils Geology Receiving Watershed

Section 2

Stormwater Management Narrative Predeveloped Stormwater Analysis Narrative Post-Developed Stormwater Analysis Narrative Infiltration Testing Infiltration Volume Requirements (§105-305) and Water Quality Requirements (§105-306) Stream Bank Erosion Requirements (§105-307) Stormwater Peak Rate Control Requirements Narrative Erosion Control Narrative Post Construction Stormwater Management Narrative

Section 3

USGS Location Map NOAA Rainfall Reports Web Soil Survey Report Infiltration Testing Report

Section 4

Predeveloped Drainage Plan Predeveloped Watershed Calculations Summaries

Section 5

Post-Developed Drainage Plan Post-Developed Calculations Summaries

Section 6

NPDES Worksheet 4 (2-YR Volume Calculations)

Section 7

Hydraflow Hydrographs Report

INLAND DESIGN

SECTION 1

Introduction

The applicant is proposing to subdivide the existing 4.375 acre property, located at 438 Webb Road, into two (2) separate lots in order to create a new 2.010 acre lot to be used for the construction of a new single family detached dwelling.

The purpose of this project narrative is to describe the proposed modifications to the property and to detail how the additional stormwater runoff resulting from the proposed impervious surfaces will be managed.

Existing Conditions

The project site is located within the R-1 Residential Zoning District. The site has residential uses to the north and west, and commercial spaces to the east and south. The portion of the site to be subdivided and developed is currently grassed with several trees. The site slopes is two separate directions down to the north and south, toward two of sections of Harvey Run..

Proposed Development

The applicant is proposing to construct a single family residence and shared driveway which will connect to the existing driveway on Lot 1. Stormwater management will be accomplished through the use of an Infiltration BMP to be located on Lot 2, and an Infiltration trench along a portion of the Lot 2 driveway.

Water Supply Facilities

The site has a proposed on-lot well to supply water.

Sanitary Sewer Facilities

The property has a proposed on-lot septic system.

Soils

The site is comprised of two soil types as follows:

SOILS TYPE	SOILS DESCRIPTION	SLOPE	DEPTH TO SEASONAL HIGHWATER TABLE	DEPTH TO BEDROCK	DRAINAGE CLASS	Hydrologic Soil Group
CdB	Chester Silt Loam	3% - 8%	More than 80 inches	More than 80 inches	Well drained	D
GaC	Gaila Silt Loam	8% - 15%	More than 80 inches	More than 80 inches	Well drained	В
GdB	Gladstone Gravelly Loam	3% - 8%	More than 80 inches	More than 80 inches	Well drained	С

It is noted that the topographic character of the site is consistent with the slopes that are found in these soils types.

Geology

The geology of the site is underlain by one formation which is described by the DCNR as: Mgh- Mafic Gneiss

Receiving Watersheds

The property is located within the Brandywine Creek watershed; PA Ch. 93 designation Warm Water Fishes, Migratory Fish (MF/WWF).

INLAND DESIGN

SECTION 2

Stormwater Management

Stormwater drainage analysis was completed using Hydraflow Stormwater Analysis Software. The SCS TR-55 method was used to determine the predeveloped and post-developed runoff rates from the site.

The drainage area was analyzed using storm intensities derived from NOAA Atlas 14 storm intensities as follows:

2 Year Rainfall	3.27 in
5 Year Rainfall	4.11 in
10 Year Rainfall	4.81 in
25 Year Rainfall	5.83 in
50 Year Rainfall	6.69 in
100 Year Rainfall	7.61 in

In addition to analyzing the peak runoff from the site after the development is completed, the additional volume generated by the proposed impervious will be infiltrated into the ground via the proposed Infiltration Facilities. In order to evaluate the volume of runoff from the site, the SCS TR-55 methodology was used to compare the difference in volume of runoff from the 2 year post-developed storm and the 2 year predeveloped storm. The soils on the site within the study area are classified as hydrologic soil groups B, C, and D. The land cover coefficients used were as follows:

Land Cover	SCS Curve Number		
	B Soil	C Soil	D Soil
Woods (pre & post)	55	70	77
Meadow (pre & post)	58	58	58
Lawn (pre & post)	61	74	80
Impervious (pre & post)	98	98	98

Predeveloped Stormwater Analysis

For the purposes of this report, the predeveloped areas were modelled as two separate watersheds called "Watershed 1" and "Watershed 2" encompassing all of the areas to be disturbed, and the areas tributary to them. The existing site was modelled using a ground cover of Woods, Meadow, Lawn, and Impervious for undisturbed areas; Meadow and Impervious were used for disturbed areas. A time of concentration path is shown, and calculations are provided. The rear of the property was modelled as meadow in the pre-developed condition based on available aerial imagery and a site visit.

Post-Developed Stormwater Analysis

Post-Developed ground covers were modelled as Wooded, Meadow, Lawn, and Impervious. The proposed BMP outflows are directed toward the low point located along Webb Road. There is also a bypass areas for each watershed. Time of concentration paths are shown, and calculations are provided.

Infiltration Testing

Infiltration testing was performed on the site by Environmental management and Consulting Inc. to determine the rates of infiltration within the infiltration facility area. The infiltration test was completed using a double ring infiltrometer as mandated by the PADEP BMP Manual. A summary of the test is provided as follows:

Test Pit #	Existing Elevation at Test Pit locations	Depth of Infiltration Test	Elevation of Infiltration Test	Infiltration Test Results	Limiting Zone	Design Infiltration Rate
SW1	476.00	60"	471.00	7.75 in/hr	>84"	3.88 in/hr
SW2	461.00	60"	456.00	6.50 in/hr	>84"	3.25 in/hr

Infiltration Volume Requirements (§105-305) and Water Quality Requirements (§105-306)

The Chadds Ford Township Stormwater Management Ordinance requires that infiltration facilities be provided to treat runoff for water quality. In order to meet this requirement, the 2-year storm runoff volumes for the disturbed areas were calculated in the predeveloped and post-developed conditions using the SCS Method. The infiltration facilities were sized to ensure that the increase in runoff volume for the 2-Yr storm is being captured and infiltrated.

	WS	WS 2		
Predeveloped	2,02	2,026 cf		
Post-Developed	4,89	7 cf	472 cf	
Increase	2,87	1 cf	-330 cf	
BMP	BMP 1	BMP 2	NA	
Infiltration Volume Provided	3,023 cf	1,032 cf	NA	
(Volume in 2-YR Hydrograph)	4,05	5 cf		
Infiltration Depth	1.9 ft	3.5 ft	NA	
Design Infiltration Rate	3.88 in/hr	3.25 in/hr	NA	
Dewatering Time (72 hr Max)	5.88 Hr	12.9 Hr.	NA	

Supporting Calculations are found in Sections 6 and 7.

Stream Bank Erosion Requirements (§105-307)

The Chadds Ford Township Stormwater Management Ordinance requires that the proposed 2year design storm to the existing 1-year flow using the SCS Type II distribution. In order to demonstrate compliance with this requirement, the pre and post-developed hydrographs were run for the 2-year SCS Type II distribution storm. The results are shown in the charts below and the detailed calculations are included in Section 7. The allowable flows for the 2-year storm are determined by adding the 2 YR Pre-Undisturbed Flow + 1 YR Pre- Disturbed Area Flow.

The post-developed area which drains toward the north discharge point is controlled by two BMPs, the remaining area is bypassed. The total outflow from the BMPs and bypass area is less than the predeveloped 1-yr/24 hr storm (within the limit of disturbance) + predeveloped 2-yr/24 hr storm (outside the disturbed area).

Watershed 1								
		Total						
	Pre-	Pre-		Post-				
	Disturbed	Undisturbed	Allowable	Dev	% of			
Storm	Flow	Flow	Flow	Runoff	Allowable			
Event	(CFS)	(CFS)	(CFS)	(CFS)				
1 Year	0.276							
2 Year		2.645	2.921	2.748	94%			

The post-developed areas which drain toward the south discharge point bypasses the proposed BMPs but is less than the predeveloped 1-yr/24 hr storm (within the limit of disturbance) + predeveloped 2-yr/24 hr storm (outside the disturbed area).

Watershed 2								
	Total							
	Pre-	Pre-		Post-				
	Disturbed	Undisturbed	Allowable	Dev	% of			
Storm	Flow	Flow	Flow	Runoff	Allowable			
Event	(CFS)	(CFS)	(CFS)	(CFS)				
1 Year	0.161							
2 Year		0.666	0.827	0.736	89%			

Stormwater Peak Rate Control Requirements (§308)

According to the Stormwater Management Ordinance, since this site located in the Brandywine Creek Watershed, runoff rates from the site must be controlled as follows:

Table 308.2 Peak Rate Control Standards in the Brandywine Creek Watersheds					
2 - year		50% of the pre 1 - year			
5 - year		50% of the pre 5 - year			
10 - year		50% of the pre 10 - year			
25 - year		50% of the pre 25 - year			
50 - year		50% of the pre 50 - year			
100 - year		50% of the pre 100 - year			

Post-development peak discharge for all design storms must be no greater than 50% of the predevelopment peak discharges.

Summary of Predeveloped vs. Post-Developed Runoff Rates

The allowable flows for each year storm are determined by adding the Pre (Undisturbed) flow for each specified year storm, as shown in Table 308.2, with 50% of the Pre (Disturbed) flow from the target year storm. (i.e. 10 YR allowable storm = 10 YR Pre-Undisturbed Flow + 50% 10 YR Pre- Disturbed Flow). In the post-developed condition, the runoff from the proposed developed areas have been controlled in the Infiltration Facility. Detailed calculations are found in sections 4 and 5.

Watershed 1								
	Pre-	Pre-		Total				
	Undisturbed	Disturbed	Allowable	Post-Dev	% of			
Storm	Flow	Flow	Flow	Runoff	Allowable			
Event	Event (CFS)		(CFS)	(CFS)				
1 Year	1.638	0.276						
2 Year	2 Year 2.645 0.498		2.783	2.748	99%			
5 Year	4.369	0.893	4.816	4.506	94%			
10 Year	5.925	1.259	6.555	6.090	93%			
25 Year	8.348	1.832	9.264	9.065	98%			
50 Year	10.480	2.346	11.653	11.520	99%			
100 Year	12.830	2.919	14.290	14.040	98%			

Watershed 2								
	Pre-	Pre-		Total				
	Undisturbed	Disturbed	Allowable	Post-Dev	% of			
Storm	Flow	Flow	Flow	Runoff	Allowable			
Event	(CFS)	(CFS)	(CFS)	(CFS)				
1 Year	0.421	0.161						
2 Year	2 Year 0.666 0.		0.747	0.736	99%			
5 Year	1.084 0.432 1.300		1.189	91%				
10 Year	1.467	0.589	1.762	1.603	91%			
25 Year 2.058 0.83		0.834	2.475	2.239	90%			
50 Year	2.574	1.049	3.099	2.795	90%			
100 Year	3.139	1.285	3.782	3.401	90%			

Erosion Control

As part of the earth moving activities erosion control measures will be taken to mitigate the discharge of sediment from the site. Standard erosion control measures including compost filter socks, stabilized constructions entrance, erosion control matting, seeding and mulching and a detailed sequence of construction will be used as part of the site development. Because the site is less than 1 acre an NPDES permit is not required.

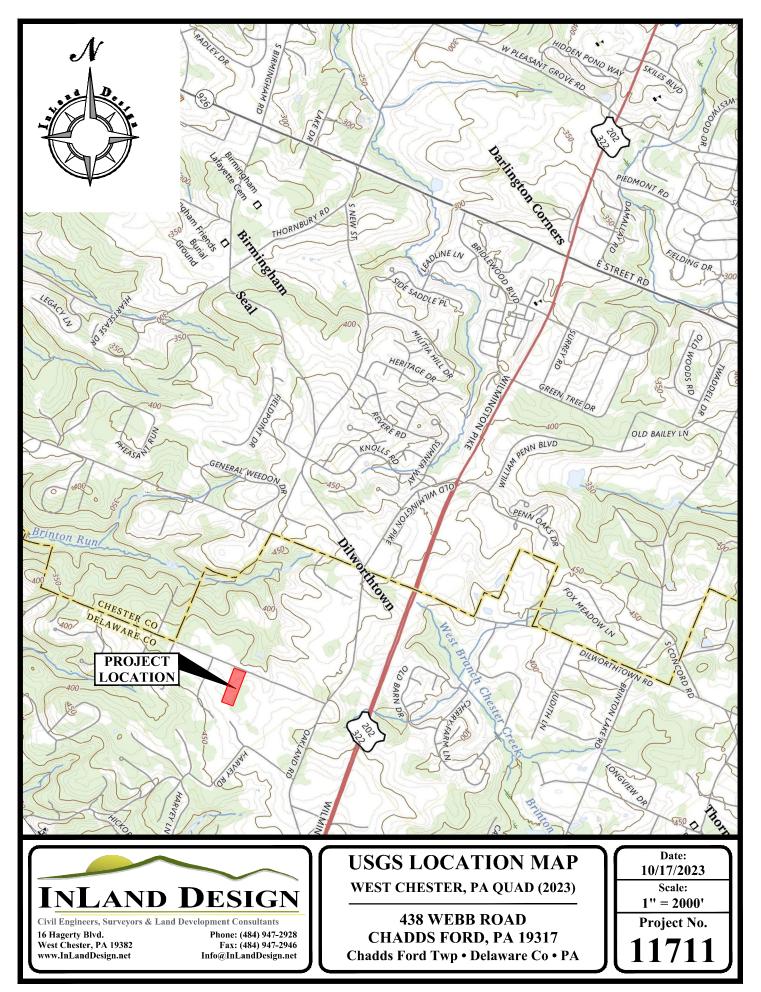
Post Construction Stormwater Management

The Post-Construction Stormwater Management Plan has been designed to preserve the integrity of stream channels and maintain and protect the physical, thermal, biological and chemical qualities of the receiving streams. This will be done by installing post-construction BMP's, which will filter, detain, and infiltrate stormwater runoff prior to release to the receiving stream. This process will enable contaminants to be removed from stormwater runoff, thereby protecting the physical, biological, thermal, and chemical quality of the receiving stream.

The Post-Construction Stormwater Management Plan has been designed to prevent an increase in the rate of stormwater runoff. The installation of the Infiltration Facility will detain the runoff and release it at controlled rates. As shown on the Stormwater Management Peak Runoff Rate Summary table on the PCSWM plan, the post-development runoff rates are less than the pre-development runoff rates.

The Post Construction Stormwater Management (PCSM) Plan has been designed to prevent an increase in the amount of stormwater runoff volume. The installation of the Infiltration Facilities will detain the runoff and allow it to infiltrate. All of the runoff volume from the impervious areas drain to Infiltration Facilities. As shown on the Stormwater Management Runoff Volume Summary table, the 2-year post-development runoff volume with BMP's installed is less than the 2-year pre-development runoff volume.

The Post-Construction Stormwater Management Plan has been designed to minimize impervious areas. Large portions of the site will remain as pervious in the post-developed conditions.


The Post-Construction Stormwater Management Plan has been designed to maximize the protection of existing drainage features and existing vegetation. The existing drainage patterns for the site are being maintained and where possible, the existing vegetation is being retained.

The Post-Construction Stormwater Management Plan has been designed to minimize land clearing and grading. The limit of disturbance area is shown on the Post-Construction Stormwater Management Plan. The grading shown on the plan is the minimal amount needed to construct the improvements and BMPs. The limit of disturbance is located immediately outside of the grading and also is the minimal amount needed to complete the proposed improvements shown on the plan.

The Post-Construction Stormwater Management Plan has been designed to minimize soil compaction. The grading has been limited to the extents required for the construction. Outside of these areas, the soil will not be compacted.

INLAND DESIGN

SECTION 3

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Chadds Ford, Pennsylvania, USA* Latitude: 39.8895°, Longitude: -75.5655° Elevation: 479 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

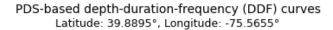
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

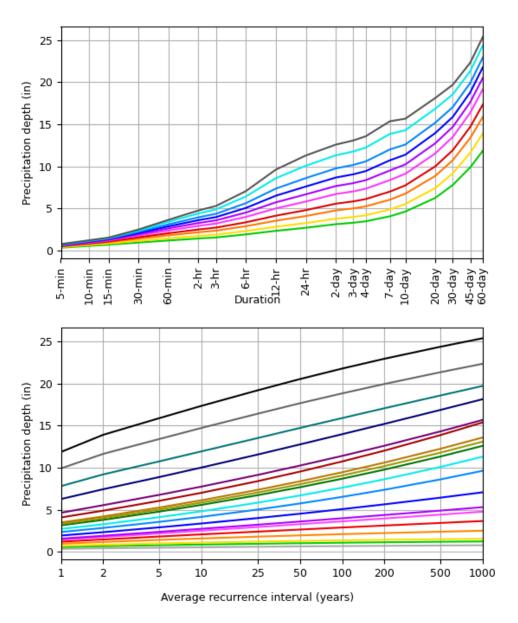
NOAA, National Weather Service, Silver Spring, Maryland

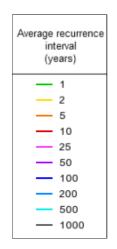
PF_tabular | PF_graphical | Maps_& aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									hes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.353	0.421	0.493	0.543	0.602	0.642	0.682	0.715	0.754	0.783
	(0.323-0.387)	(0.385-0.461)	(0.450-0.539)	(0.494-0.594)	(0.546-0.659)	(0.579-0.703)	(0.612-0.748)	(0.638-0.787)	(0.666-0.833)	(0.686-0.869)
10-min	0.564	0.673	0.789	0.868	0.960	1.02	1.08	1.13	1.19	1.23
	(0.516-0.618)	(0.616-0.737)	(0.720-0.863)	(0.791-0.950)	(0.870-1.05)	(0.922-1.12)	(0.972-1.19)	(1.01-1.25)	(1.05-1.32)	(1.08-1.37)
15-min	0.706	0.846	0.998	1.10	1.22	1.30	1.37	1.43	1.50	1.55
	(0.645-0.773)	(0.774-0.926)	(0.911-1.09)	(1.00-1.20)	(1.10-1.33)	(1.17-1.42)	(1.23-1.50)	(1.28-1.57)	(1.33-1.66)	(1.36-1.72)
30-min	0.967	1.17	1.42	1.59	1.80	1.95	2.10	2.23	2.39	2.51
	(0.884-1.06)	(1.07-1.28)	(1.29-1.55)	(1.45-1.74)	(1.63-1.97)	(1.76-2.14)	(1.88-2.30)	(1.99-2.45)	(2.11-2.64)	(2.20-2.78)
60-min	1.21	1.47	1.82	2.07	2.40	2.64	2.89	3.12	3.43	3.66
	(1.10-1.32)	(1.34-1.60)	(1.66-1.99)	(1.89-2.27)	(2.17-2.62)	(2.38-2.89)	(2.59-3.17)	(2.79-3.44)	(3.03-3.79)	(3.21-4.06)
2-hr	1.44	1.75	2.18	2.51	2.94	3.28	3.62	3.96	4.42	4.77
	(1.30-1.59)	(1.59-1.94)	(1.98-2.41)	(2.26-2.77)	(2.64-3.24)	(2.92-3.62)	(3.21-4.00)	(3.48-4.38)	(3.84-4.90)	(4.10-5.32)
3-hr	1.57 (1.42-1.73)	1.90 (1.73-2.10)	2.37 (2.15-2.62)	2.74 (2.47-3.02)	3.22 (2.89-3.55)	3.60 (3.21-3.96)	3.98 (3.53-4.39)	4.37 (3.84-4.83)	4.90 (4.24-5.43)	5.30 (4.55-5.90)
6-hr	1.93	2.33	2.90	3.36	4.00	4.52	5.07	5.64	6.43	7.07
	(1.75-2.14)	(2.12-2.59)	(2.63-3.22)	(3.04-3.72)	(3.59-4.43)	(4.02-5.00)	(4.46-5.60)	(4.91-6.24)	(5.50-7.16)	(5.96-7.90)
12-hr	2.35	2.84	3.56	4.15	5.02	5.74	6.52	7.37	8.60	9.62
	(2.13-2.63)	(2.57-3.17)	(3.21-3.97)	(3.73-4.62)	(4.46-5.57)	(5.06-6.37)	(5.68-7.26)	(6.33-8.21)	(7.23-9.62)	(7.94-10.8)
24-hr	2.72 (2.50-2.97)	3.27 (3.01-3.58)	4.11 (3.78-4.50)	4.81 (4.40-5.25)	5.83 (5.31-6.35)	6.69 (6.06-7.27)	7.61 (6.85-8.26)	8.62 (7.70-9.35)	10.1 (8.91-10.9)	11.3 (9.90-12.2)
2-day	3.14	3.79	4.77	5.58	6.72	7.67	8.68	9.76	11.3	12.6
	(2.88-3.44)	(3.48-4.15)	(4.38-5.22)	(5.10-6.10)	(6.12-7.34)	(6.96-8.38)	(7.83-9.48)	(8.75-10.7)	(10.1-12.4)	(11.1-13.7)
3-day	3.31	4.00	5.02	5.85	7.03	8.02	9.06	10.2	11.8	13.1
	(3.04-3.63)	(3.67-4.37)	(4.61-5.48)	(5.36-6.39)	(6.41-7.68)	(7.28-8.74)	(8.18-9.87)	(9.13-11.1)	(10.5-12.8)	(11.5-14.3)
4-day	3.49 (3.21-3.81)	4.20 (3.86-4.59)	5.26 (4.83-5.74)	6.12 (5.61-6.68)	7.35 (6.71-8.01)	8.37 (7.60-9.10)	9.44 (8.54-10.3)	10.6 (9.51-11.5)	12.2 (10.9-13.3)	13.6 (12.0-14.8)
7-day	4.08	4.89	6.05	7.01	8.38	9.52	10.7	12.0	13.9	15.4
	(3.79-4.42)	(4.54-5.30)	(5.61-6.56)	(6.49-7.59)	(7.73-9.06)	(8.73-10.3)	(9.79-11.6)	(10.9-13.0)	(12.4-15.0)	(13.7-16.6)
10-day	4.64 (4.32-5.00)	5.54 (5.16-5.97)	6.76 (6.30-7.28)	7.75 (7.20-8.34)	9.12 (8.45-9.81)	10.2 (9.45-11.0)	11.4 (10.5-12.2)	12.6 (11.5-13.5)	14.3 (13.0-15.4)	15.7 (14.1-16.9)
20-day	6.26 (5.87-6.71)	7.43 (6.96-7.96)	8.87 (8.30-9.50)	10.0 (9.35-10.7)	11.5 (10.8-12.3)	12.7 (11.8-13.6)	14.0 (12.9-14.9)	15.2 (14.0-16.3)	16.8 (15.4-18.1)	18.1 (16.5-19.5)
30-day	7.80 (7.34-8.28)	9.19 (8.66-9.76)	10.7 (10.1-11.4)	11.9 (11.2-12.7)	13.5 (12.7-14.3)	14.7 (13.8-15.6)	15.9 (14.8-16.9)	17.0 (15.8-18.1)	18.6 (17.2-19.8)	19.7 (18.2-21.0)
45-day	9.90	11.6	13.4	14.7	16.4	17.6	18.8	19.9	21.3	22.3
	(9.39-10.5)	(11.0-12.3)	(12.7-14.1)	(13.9-15.5)	(15.5-17.3)	(16.7-18.6)	(17.7-19.9)	(18.8-21.1)	(20.0-22.6)	(20.9-23.7)
60-day	11.9 (11.3-12.5)	13.9 (13.2-14.6)	15.9 (15.1-16.7)	17.3 (16.5-18.2)	19.2 (18.2-20.2)	20.5 (19.4-21.6)	21.8 (20.6-22.9)	22.9 (21.7-24.1)	24.3 (23.0-25.7)	25.4 (23.9-26.8)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

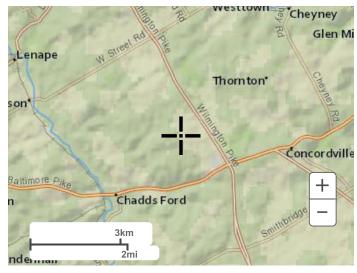

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

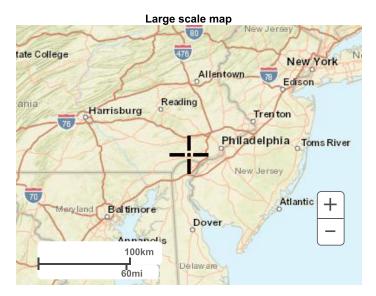
Duration					
5-min	— 2-day				
10-min	— 3-day				
15-min	— 4-day				
30-min	— 7-day				
- 60-min	— 10-day				
— 2-hr	— 20-day				
— 3-hr	— 30-day				
— 6-hr	— 45-day				
- 12-hr	- 60-day				
24-hr					

NOAA Atlas 14, Volume 2, Version 3

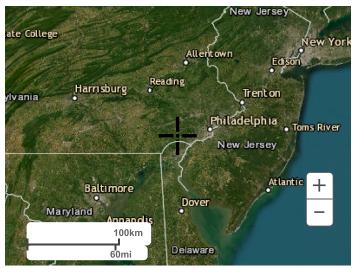

Created (GMT): Mon Oct 30 15:30:14 2023

Back to Top

Maps & aerials


Small scale terrain

Precipitation Frequency Data Server


Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Delaware County**, **Pennsylvania**

438 Webb Rd Chadds Ford, PA 19317

(InLand prj #11711)

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map (438 Webb Rd (InLand proj 11711))	
Legend	
Map Unit Legend (438 Webb Rd (InLand proj 11711))	
Map Unit Descriptions (438 Webb Rd (InLand proj 11711))	
Delaware County, Pennsylvania	
CdB—Chester silt loam, 3 to 8 percent slopes	
GaC—Gaila silt loam, 8 to 15 percent slopes	
GdB—Gladstone gravelly loam, 3 to 8 percent slopes	
References	

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION
Area of In	terest (AOI)	300	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
	Area of Interest (AOI)	۵	Stony Spot	,
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$	Wet Spot	
	Soil Map Unit Points	\triangle	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
—	Special Point Features		Special Line Features	line placement. The maps do not show the small areas of
(0)			atures	contrasting soils that could have been shown at a more detailed scale.
8	Borrow Pit	\sim	Streams and Canals	
×	Clay Spot	Transport		Please rely on the bar scale on each map sheet for map measurements.
õ	Closed Depression	+++	Rails	measurements.
×	Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
°. G.D	Gravelly Spot	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
	Landfill	~	Major Roads	
Ň.	Lava Flow	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
۸. ملغ	Marsh or swamp	Backgrou	Ind Aerial Photography	distance and area. A projection that preserves area, such as the
_	Mine or Quarry		Aenai Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
*	Mine of Quarry			
0				This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
0	Perennial Water			
×	Rock Outcrop			Soil Survey Area: Delaware County, Pennsylvania Survey Area Data: Version 21, Sep 4, 2023
+	Saline Spot			
000	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Jun 5, 2022—Jul 4,
≫	Slide or Slip			2022
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend (438 Webb Rd (InLand proj 11711)

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI		
CdB	Chester silt loam, 3 to 8 percent slopes	0.3	6.5%		
GaC	Gaila silt loam, 8 to 15 percent slopes	1.0	23.4%		
GdB	Gladstone gravelly loam, 3 to 8 percent slopes	3.0	70.1%		
Totals for Area of Interest	1	4.3	100.0%		

Map Unit Descriptions (438 Webb Rd (InLand proj 11711)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Delaware County, Pennsylvania

CdB—Chester silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 30ynl Elevation: 20 to 160 feet Mean annual precipitation: 39 to 53 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 190 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Chester and similar soils: 91 percent Minor components: 9 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chester

Setting

Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Linear, convex Parent material: Residuum weathered from mica schist

Typical profile

Ap - 0 to 10 inches: silt loam BE - 10 to 17 inches: silt loam Bt1 - 17 to 22 inches: clay loam Bt2 - 22 to 30 inches: clay loam Bt3 - 30 to 38 inches: clay loam Bt4 - 38 to 56 inches: loam C - 56 to 92 inches: fine sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 10.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: D Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

Minor Components

Glenville, sil surface

Percent of map unit: 9 percent Landform: Swales, drainageways Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Interfluve, head slope, base slope Down-slope shape: Concave, linear Across-slope shape: Linear, concave Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

GaC—Gaila silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 30cf8 Elevation: 20 to 160 feet Mean annual precipitation: 39 to 53 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 190 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Gaila and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gaila

Setting

Landform: Hillslopes Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from muscovite schist

Typical profile

Ap - 0 to 8 inches: silt loam Bt - 8 to 17 inches: loam BC - 17 to 20 inches: loam C - 20 to 80 inches: sandy loam

Properties and qualities

Slope: 8 to 15 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very high

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to 1.42 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

Minor Components

Chester

Percent of map unit: 8 percent Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Linear, convex Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

Glenville, sil surface

Percent of map unit: 7 percent Landform: Swales, drainageways Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Interfluve, head slope, base slope Down-slope shape: Concave, linear Across-slope shape: Linear, concave Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

GdB—Gladstone gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 312p4 Elevation: 20 to 160 feet Mean annual precipitation: 39 to 53 inches Mean annual air temperature: 48 to 57 degrees F Frost-free period: 190 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Gladstone and similar soils: 93 percent *Minor components:* 7 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gladstone

Setting

Landform: Hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Loamy colluvium derived from granite and gneiss and/or loamy residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 10 inches: gravelly loam Bt1 - 10 to 22 inches: sandy clay loam Bt2 - 22 to 37 inches: loam C - 37 to 66 inches: sandy loam R - 66 to 80 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 61 to 67 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

Minor Components

Califon

Percent of map unit: 4 percent Landform: Hills Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: F148XY024PA - Moist, Piedmont - felsic, Upland, Mixed Oak -Hardwood - Conifer Forest Hydric soil rating: No

Cokesbury

Percent of map unit: 3 percent Landform: Depressions Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Ecological site: F148XY030PA - Hydric, Piedmont - felsic, Riparian Zone, Swamp Meadow-Shrub-Forest Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Environmental Management & Consulting, Inc.

INFILTRATION TEST REPORT FOR ON-LOT DISPOSAL OF STORMWATER

Applicant/Client: Inland Design/Devlin

Site Address/Location.: 438 Webb Road

Person Conducting Test: Mark A. Bryan

Weather Conditions: Sunny 32°+ Dry last 24 Hours Date of Test: 11/30/2023 Municipality: Chadd Ford Twp.

County: Delaware

Location: SW1/SW2

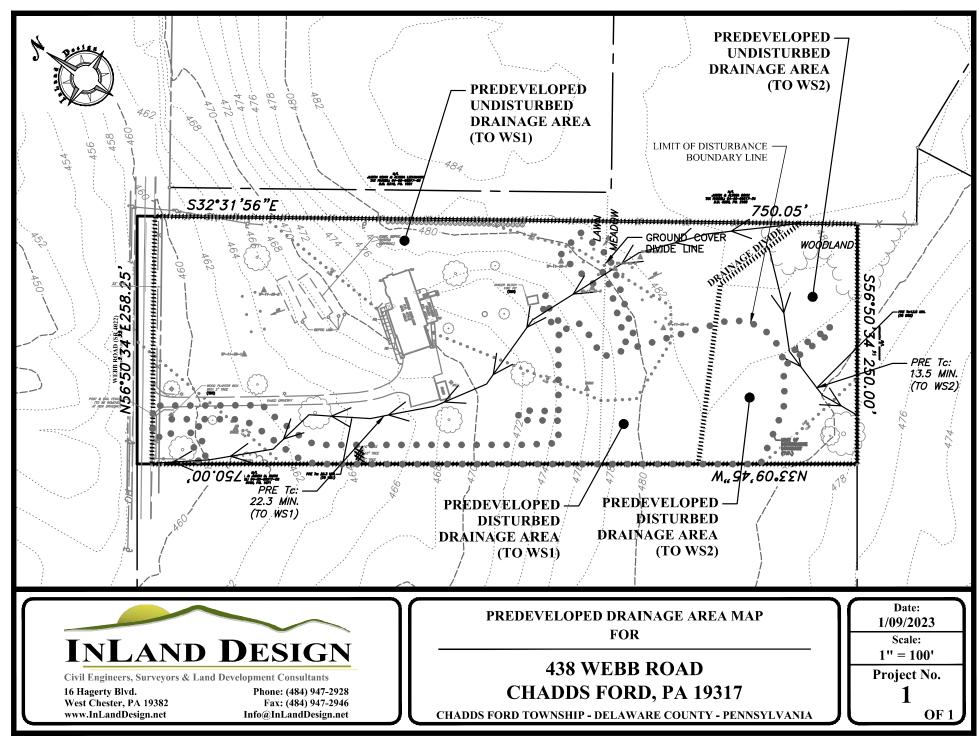
Test Method: Double-Ring Infiltrometer

Profile De	escriptions:	
Horizon	Depth (in.)	Description
<u>SW1</u>		
A	0-12	Dark brown silt loam, moderate granular, very friable, clear boundary
В	12-28	Brown silt loam, moderate subangular blocky/granular, very friable, gradual boundary
С	28-84	Grey/Yellow/Brown variegated fine sandy loam, moderate granular, very friable
	No Limiting	g Zone encountered to 84"+

SW2		
А	0-10	Dark brown silt loam, moderate granular, very friable, clear boundary
В	10-33	Light Brown silt loam, moderate subangular blocky, sticky/friable, gradual boundary
С	33-84	Black/Brown variegated fine sandy loam, moderate granular, very friable

No Limiting Zone encountered to 84"+

	Test	Start		Drop (in.)						
Hole No.	Depth (in.)	Depth (in.)	PS1	PS2	1	2	3	4	5	6
SW1A	60	12	5 1/2	5	4 1/2	4 3/8	4 1/4	4 1/4		
Time:			:30	:30	:30	:30	:30	:30		
SW1B	60	12	4 1/4	3 3/4	3 5/8	3 1/2	3 1/2	3 1/2		
Time:			:30	:30	:30	:30	:30	:30		
SW2A	60	12	4	3 1/2	3 1/4	3 1/4	3	3		
Time:			:30	:30	:30	:30	:30	:30		
SW2B	60	12	4 1/2	4	3 3/4	3 5/8	3 5/8	3 1/2		
Time:			:30	:30	:30	:30	:30	:30		


Calculation of Infiltration Rate:

Hole No.	Drop in Final Per.	Reading Interval	Minutes/ Inch	Inches/ Hour
SW1A	4 1/4	30	7.06	8.50
SW1B	3 1/2	30	8.57	7.00
SW2A	3	30	10.00	6.00
SW2B	3 1/2	30	8.57	7.00

INLAND DESIGN

SECTION 4

Project Number:11711Project Name:438 Webb RoadDrainage area:WS1

PRE DEVELOPMENT - UNDISTURBED AREA

DRAINAGE AREA: 2.76 Acs.

RUNOFF COEFFICIENT:	HSG	Rational 'C'	CN	AREA AC	S	la	Q(in)	2-YR RUNOFF (CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.08	7.24	1.45	0.37	106
LAWN	В	0.25	61	0.69	6.39	1.28	0.47	1185
WOODS	С	0.45	70	0.01	4.29	0.86	0.87	32
MEADOW	С	0.44	71	0.29	4.08	0.82	0.92	969
LAWN	С	0.51	74	1.36	3.51	0.70	1.08	5351
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.00	2.82	0.56	1.32	0
LAWN	D	0.65	80	0.14	2.50	0.50	1.46	740
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS		0.99	98	0.19	0.20	0.04	3.04	2095
					T () (<i></i>	40477

weighted CN= 71.9 weighted 'C''= 0.47 Total 2 year runoff volume= 10477

TIME OF CONCENTRATION:

1) Sheet Flow

USE: 22.3

Min.

Seg	L(ft)	EI_1	El_2	S (%)	n	P (in/hr)	T _t (min)
1	100	484.0	483.0	1%	0.24	3.27	18.63
2				0%		3.27	0.00
3				0%		3.27	0.00

18.6 Min.

2) Shallow Concentrated Flow

3.7 Min

Seg	L(ft)	EI_1	El_2	S (%)	Paved	V (ft/s)	T _t (min)
1	300	483.0	470.0	4%	NO	3.4	1.49
2	365	470.0	459.0	3%	NO	2.8	2.17
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00

3) Channel Flow 0.0 Min.

Seg	L(ft)	El₁	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 22.29 Min.

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS1

PRE DEVELOPMENT - DISTURBED AREA

DRAINAGE AREA: 0.70 Acs.

RUNOFF COEFFICIENT:	HSG	Rational 'C'	CN	AREA AC	S	la	Q(in)	2-YR RUNOFF (CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.17	7.24	1.45	0.37	226
LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
WOODS	С	0.45	70	0.00	4.29	0.86	0.87	0
MEADOW	С	0.44	71	0.51	4.08	0.82	0.92	1704
LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.02	2.82	0.56	1.32	96
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
weighted CN= 68.0					Total 2	2 year runo	ff volume=	2026

weighted CN= 68.0 weighted 'C"= 0.42

> USE: 22.3 Min.

> > T_t (min)

18.63

0.00

0.00

3.27

3.27

3.27

1) Sheet Flow

1 2

TIME OF CONCENTRATION:

Seg L(ft) EI_1 S (%) P (in/hr) EI_2 n 100 484 483 1% 0.24

18.6 Min.

3 2) Shallow Concentrated Flow

3.7 Min

0%

0%

Seg	L(ft)	El1	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1	300	483	470	4%	NO	3.4	1.49
2	365	470	459	3%	NO	2.8	2.17
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00

3) Channel Flow 0.0 Min.

Seg	L(ft)	El₁	EI_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 22.29 Min.

Project Number:11711Project Name:438 Webb RoadDrainage area:WS2

PRE DEVELOPMENT - UNDISTURBED AREA

DRAINAGE AREA: 0.57 Acs.

RUNOFF COEFFICIENT:	HSG	Rational 'C'	CN	AREA AC	S	la	Q(in)	2-YR RUNOFF (CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.00	7.24	1.45	0.37	0
LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
WOODS	С	0.45	70	0.08	4.29	0.86	0.87	252
MEADOW	С	0.44	71	0.39	4.08	0.82	0.92	1303
LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.10	2.82	0.56	1.32	481
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0

weighted CN= 72.1 weighted 'C''= 0.47 Total 2 year runoff volume= 2036

TIME OF CONCENTRATION:

USE: 13.5 Min.

1) Sheet Flow

12.9 Min.

Seg	L(ft)	El ₁	EI_2	S (%)	n	P (in/hr)	T _t (min)
1	100	484.5	482.0	3%	0.24	3.27	12.91
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

0.6 Min

Seg	L(ft)	EI_1	El_2	S (%)	Paved	V (ft/s)	T _t (min)
1	110	482.0	478.0	4%	NO	3.1	0.60
2				0%		0.0	0.00
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00

3) Channel Flow 0.0 Min.

Seg	L(ft)	El₁	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 13.51 Min.

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS2

PRE DEVELOPMENT - DISTURBED AREA

DRAINAGE AREA: 0.24 Acs.

RUNOFF COEFFICIENT:	HSG	Rational 'C'	CN	AREA AC	S	la	Q(in)	2-YR RUNOFF (CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.00	7.24	1.45	0.37	0
LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
WOODS	С	0.45	70	0.00	4.29	0.86	0.87	0
MEADOW	С	0.44	71	0.24	4.08	0.82	0.92	802
LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.00	2.82	0.56	1.32	0
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
weighted CN= 71.0					802			

weighted CN= 71.0 weighted 'C"= 0.44

USE: 13.5 Min.

1) Sheet Flow

TIME OF CONCENTRATION:

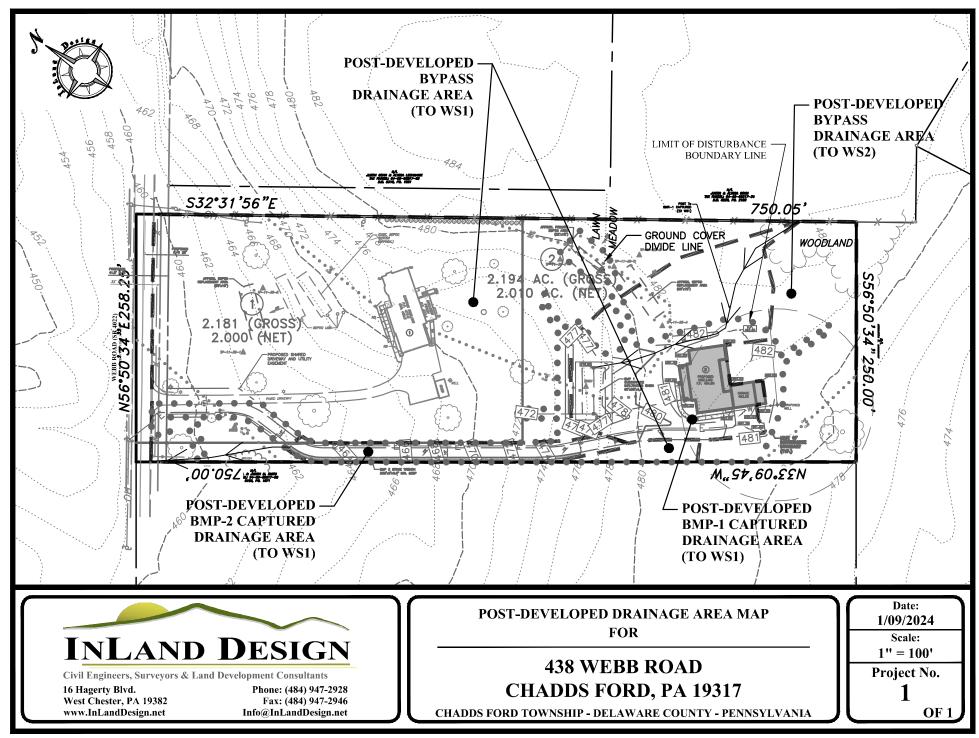
12.9 Min.

Seg	L(ft)	El1	EI_2	S (%)	n	P (in/hr)	T _t (min)
1	100	484.5	482	3%	0.24	3.27	12.91
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

0.6 Min

Seg	L(ft)	EI_1	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1	110	482	478	4%	NO	3.1	0.60
2				0%		0.0	0.00
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00


3) Channel Flow 0.0 Min.

Seg	L(ft)	El₁	EI_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 13.51 Min.

INLAND DESIGN

SECTION 5

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS1

POST DEVELOPMENT BYPASS

DRAINAGE AREA: 2.79 Acs.

		Rational						2-YR RUNOFF
RUNOFF COEFFICIENT:	HSG	'C'	CN	AC	S	la	Q(in)	(CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.02	7.24	1.45	0.37	27
LAWN	В	0.25	61	0.76	6.39	1.28	0.47	1305
WOODS	С	0.45	70	0.00	4.29	0.86	0.87	0
MEADOW	С	0.44	71	0.20	4.08	0.82	0.92	668
LAWN	С	0.51	74	1.44	3.51	0.70	1.08	5666
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.00	2.82	0.56	1.32	0
LAWN	D	0.65	80	0.15	2.50	0.50	1.46	793
UNDISTURBED IMPERVIOUS		0.99	98	0.19	0.20	0.04	3.04	2095
IMPERVIOUS ROOFTOPS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROADWAY		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ON-SITE		0.99	98	0.03	0.20	0.04	3.04	331
IMPERVIOUS FUTURE		0.99	98	0.00	0.20	0.04	3.04	0

weighted CN= 72.3 weighted 'C'= 0.48

TIME OF CONCENTRATION:

USE: 22.3 Min.

1) Sheet Flow

18.6 Min.

Seg	L(ft)	EI ₁	EI_2	S (%)	n	P (in/hr)	T _t (min)
1	100	484	483	1%	0.24	3.27	18.63
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

3.7 Min

Seg	L(ft)	EI_1	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1	300	483	470	4%	NO	3.4	1.49
2	365	470	459	3%	NO	2.8	2.17
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00

3) Channel Flow 0.0 Min.

		••• •••							
Seg	L(ft)	El1	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 22.3 Min.

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS1

POST DEVELOPED CAPTURED BMP 1

DRAINAGE AI	REA: 0.68	Acs.
-------------	-----------	------

		Rational						2-YR RUNOFF
RUNOFF COEFFICIENT:	HSG	Kalionai 'C'	CN	AC	S	la	O(in)	
RUNUFF CUEFFICIENT.	пзб	C	CN	AC	3	la	Q(in)	(CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.06	7.24	1.45	0.37	80
LAWN	В	0.25	61	0.10	6.39	1.28	0.47	172
WOODS	С	0.45	70	0.00	4.29	0.86	0.87	0
MEADOW	С	0.44	71	0.21	4.08	0.82	0.92	702
LAWN	С	0.51	74	0.13	3.51	0.70	1.08	511
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.00	2.82	0.56	1.32	0
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROOFTOPS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROADWAY		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ON-SITE		0.99	98	0.13	0.20	0.04	3.04	1433
IMPERVIOUS FUTURE		0.99	98	0.05	0.20	0.04	3.04	551

weighted CN= 76.1 weighted 'C'= 0.56

TIME OF CONCENTRATION:

USE: 19.6 Min.

1) Sheet Flow

18.6 Min.

Seg	L(ft)	El1	EI_2	S (%)	n	P (in/hr)	T _t (min)
1	100	484	483	1%	0.24	3.27	18.63
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

0.9 Min

Seg	L(ft)	El ₁	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1	180	483	476	4%	NO	3.2	0.94
2				0%		0.0	0.00
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00

3) Channel Flow 0.00 Min.

Seg	L(ft)	El₁	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 19.57 Min.

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS1

POST DEVELOPED CAPTURED BMP 2

DRAINAGE AREA: 0.16 Acs.

								2-YR
		Rational						RUNOFF
RUNOFF COEFFICIENT:	HSG	'C'	CN	AC	S	la	Q(in)	(CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.00	7.24	1.45	0.37	0
LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
WOODS	С	0.45	70	0.00	4.29	0.86	0.87	0
MEADOW	С	0.44	71	0.00	4.08	0.82	0.92	0
LAWN	С	0.51	74	0.08	3.51	0.70	1.08	315
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.00	2.82	0.56	1.32	0
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROOFTOPS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROADWAY		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ON-SITE		0.99	98	0.08	0.20	0.04	3.04	882
IMPERVIOUS FUTURE		0.99	98	0.00	0.20	0.04	3.04	0

weighted CN= 86.0 weighted 'C'= 0.75

TIME OF CONCENTRATION:

USE: 5.0 Min.

1) Sheet Flow

0.0 Min.

Seg	L(ft)	El1	EI_2	S (%)	n	P (in/hr)	T _t (min)
1				0%		3.27	0.00
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

0.0 Min

Seg	L(ft)	EI_1	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1				0%		0.0	0.00
2				0%		0.0	0.00
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00
6				0%		0.0	0.00
7				0%		0.0	0.00
8				0%		0.0	0.00
9				0%		0.0	0.00
10				0%		0.0	0.00

3) Channel Flow 0.00 Min.

Seg	L(ft)	El₁	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 0.00 Min.

Project Number:	11711
Project Name:	438 Webb Road
Drainage area:	WS2

POST DEVELOPMENT BYPASS

DRAINAGE AREA: 0.61 Acs.

		Rational						2-YR RUNOFF
RUNOFF COEFFICIENT:	HSG	'C'	CN	AC	S	la	Q(in)	(CF)
OFF-SITE LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
OFF-SITE LAWN	С	0.51	74	0.00	3.51	0.70	1.08	0
OFF-SITE IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
WOODS	В	0.41	55	0.00	8.18	1.64	0.27	0
MEADOW	В	0.35	58	0.00	7.24	1.45	0.37	0
LAWN	В	0.25	61	0.00	6.39	1.28	0.47	0
WOODS	С	0.45	70	0.08	4.29	0.86	0.87	252
MEADOW	С	0.44	71	0.31	4.08	0.82	0.92	1036
LAWN	С	0.51	74	0.12	3.51	0.70	1.08	472
WOODS	D	0.59	77	0.00	2.99	0.60	1.26	0
MEADOW	D	0.61	78	0.10	2.82	0.56	1.32	481
LAWN	D	0.65	80	0.00	2.50	0.50	1.46	0
UNDISTURBED IMPERVIOUS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROOFTOPS		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ROADWAY		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS ON-SITE		0.99	98	0.00	0.20	0.04	3.04	0
IMPERVIOUS FUTURE		0.99	98	0.00	0.20	0.04	3.04	0

weighted CN= 72.6 weighted 'C'= 0.48

TIME OF CONCENTRATION:

USE: 13.5 Min.

1) Sheet Flow

12.9 Min.

Seg	L(ft)	EI_1	El ₂	S (%)	n	P (in/hr)	T _t (min)
1	100	484.5	482	3%	0.24	3.27	12.91
2				0%		3.27	0.00
3				0%		3.27	0.00

2) Shallow Concentrated Flow

0.6 Min

Seg	L(ft)	EI_1	EI_2	S (%)	Paved	V (ft/s)	T _t (min)
1	110	482	478	4%	NO	3.1	0.60
2				0%		0.0	0.00
3				0%		0.0	0.00
4				0%		0.0	0.00
5				0%		0.0	0.00

3) Channel Flow 0.0 Min.

e, enamer ren		0.0							
Seg	L(ft)	El1	El_2	S (%)	n	X Sec. Area (sf)	Wetted Per. (ft)	V (ft/s)	T _t (min)
1				0%				0.0	0.00
2				0%				0.0	0.00
3				0%				0.0	0.00

Total T_t: 13.5 Min.

INLAND DESIGN

SECTION 6

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

438 Webb Road
WS1
3.27 in
3.46 acres
2.76 acres
0.70 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (Ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume (ft ³)
WOODS	В	0.00	55	8.1818	1.6364	0.2719	0
MEADOW	В	0.17	58	7.2414	1.4483	0.3662	226
WOODS	С	0.00	70	4.2857	0.8571	0.8691	0
MEADOW	С	0.51	71	4.0845	0.8169	0.9205	1704
WOODS	D	0.00	77	2.9870	0.5974	1.2621	0
MEADOW	D	0.02	78	2.8205	0.5641	1.3249	96
Impervious		0.00	98	0.2041	0.0408	3.0372	0
TOTAL:		0.70				8.0518	2026

Developed Conditions:

Cover Type/Condition	Soil Type	Area (Ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume (ft ³)
Lawn	В	0.18	61	6.3934	1.2787	0.4729	309
Lawn	С	0.34	74	3.5135	0.7027	1.0839	1338
Lawn	D	0.01	80	2.5000	0.5000	1.4560	53
Impervious Rooftops		0.00	98	0.2041	0.0408	3.0372	0
Impervious Roadway		0.00	98	0.2041	0.0408	3.0372	0
Impervious On Site		0.24	98	0.2041	0.0408	3.0372	2646
Impervious Misc		0.05	98	0.2041	0.0408	3.0372	551
TOTAL:		0.82				15.1617	4897

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q= $(P-0.2S)^2$ / (P+0.8S) where P = 2-Year Rainfall (in) S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land use area (sq. ft)

Note: Runoff Volume must be calcualted for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

438 Webb Road				
WS2				
3.27 in				
0.81 acres				
0.57 acres				
0.24 acres				

Existing Conditions:

Cover Type/Condition	Soil Type	Area (Ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume (ft ³)
WOODS	В	0.00	55	8.1818	1.6364	0.2719	0
MEADOW	В	0.00	58	7.2414	1.4483	0.3662	0
WOODS	С	0.00	70	4.2857	0.8571	0.8691	0
MEADOW	С	0.24	71	4.0845	0.8169	0.9205	802
WOODS	D	0.00	77	2.9870	0.5974	1.2621	0
MEADOW	D	0.00	78	2.8205	0.5641	1.3249	0
Impervious		0.00	98	0.2041	0.0408	3.0372	0
TOTAL:		0.24				8.0518	802

Developed Conditions:

Cover Type/Condition	Soil Type	Area (Ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume (ft ³)
Lawn	В	0.00	61	6.3934	1.2787	0.4729	0
Lawn	С	0.12	74	3.5135	0.7027	1.0839	472
Lawn	D	0.00	80	2.5000	0.5000	1.4560	0
Impervious Rooftops		0.00	98	0.2041	0.0408	3.0372	0
Impervious Roadway		0.00	98	0.2041	0.0408	3.0372	0
Impervious On Site		0.00	98	0.2041	0.0408	3.0372	0
Impervious Misc		0.00	98	0.2041	0.0408	3.0372	0
TOTAL:		0.12				15.1617	472

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q= $(P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land use area (sq. ft)

Note: Runoff Volume must be calcualted for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

INLAND DESIGN

SECTION 7

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year

S	Summary Report	3
F	lydrograph Reports	. 4
	Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	
	Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	5
	Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	. 6
	Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	. 7
	Hydrograph No. 7, Reservoir, BMP 1 ROUTED	
	Pond Report - BMP 1	9
	Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	
	Hydrograph No. 10, Reservoir, BMP 2 ROUTED	11
	Pond Report - BMP 2	
	Hydrograph No. 12, Combine, WS1 POST TOTAL	13
	Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	
	Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	
	Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	

2 - Year

Summary Report	17
lydrograph Reports	
Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	18
Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	19
Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	20
Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	21
Hydrograph No. 7, Reservoir, BMP 1 ROUTED	22
Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	23
Hydrograph No. 10, Reservoir, BMP 2 ROUTED	24
Hydrograph No. 12, Combine, WS1 POST TOTAL	25
Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	26
Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	27
Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	28

5 - Year

Summary Report	29
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	30
Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	31
Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	32
Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	33
Hydrograph No. 7, Reservoir, BMP 1 ROUTED	34
Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	35
Hydrograph No. 10, Reservoir, BMP 2 ROUTED	36
Hydrograph No. 12, Combine, WS1 POST TOTAL	37
Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	38

Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	39
Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	40

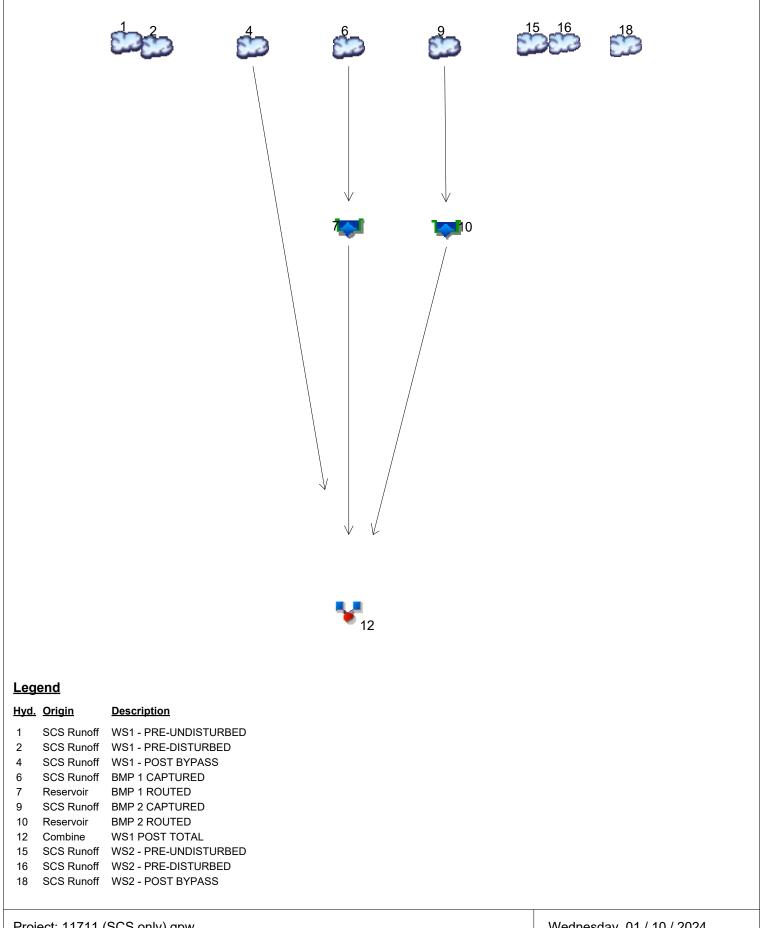
10 - Year

Summary Report	. 41
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	
Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	. 43
Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	. 44
Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	45
Hydrograph No. 7, Reservoir, BMP 1 ROUTED	. 46
Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	47
Hydrograph No. 10, Reservoir, BMP 2 ROUTED	. 48
Hydrograph No. 12, Combine, WS1 POST TOTAL	. 49
Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	50
Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	. 51
Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	52

25 - Year

;	Summary Report	53
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	54
	Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	55
	Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	56
	Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	57
	Hydrograph No. 7, Reservoir, BMP 1 ROUTED	58
	Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	59
	Hydrograph No. 10, Reservoir, BMP 2 ROUTED	60
	Hydrograph No. 12, Combine, WS1 POST TOTAL	61
	Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	62
	Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	63
	Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	

50 - Year


Summary Report	65
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	
Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	67
Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	68
Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED	69
Hydrograph No. 7, Reservoir, BMP 1 ROUTED	70
Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED	71
Hydrograph No. 10, Reservoir, BMP 2 ROUTED	72
Hydrograph No. 12, Combine, WS1 POST TOTAL	
Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	
Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	
Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	

100 - Year

Hydrograph Reports	78
Hydrograph No. 1, SCS Runoff, WS1 - PRE-UNDISTURBED	78
Hydrograph No. 2, SCS Runoff, WS1 - PRE-DISTURBED	79
Hydrograph No. 4, SCS Runoff, WS1 - POST BYPASS	80
Hydrograph No. 6, SCS Runoff, BMP 1 CAPTURED 8	81
Hydrograph No. 7, Reservoir, BMP 1 ROUTED 8	82
Hydrograph No. 9, SCS Runoff, BMP 2 CAPTURED 8	83
Hydrograph No. 10, Reservoir, BMP 2 ROUTED 8	84
Hydrograph No. 12, Combine, WS1 POST TOTAL	85
Hydrograph No. 15, SCS Runoff, WS2 - PRE-UNDISTURBED	86
Hydrograph No. 16, SCS Runoff, WS2 - PRE-DISTURBED	87
Hydrograph No. 18, SCS Runoff, WS2 - POST BYPASS	88

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

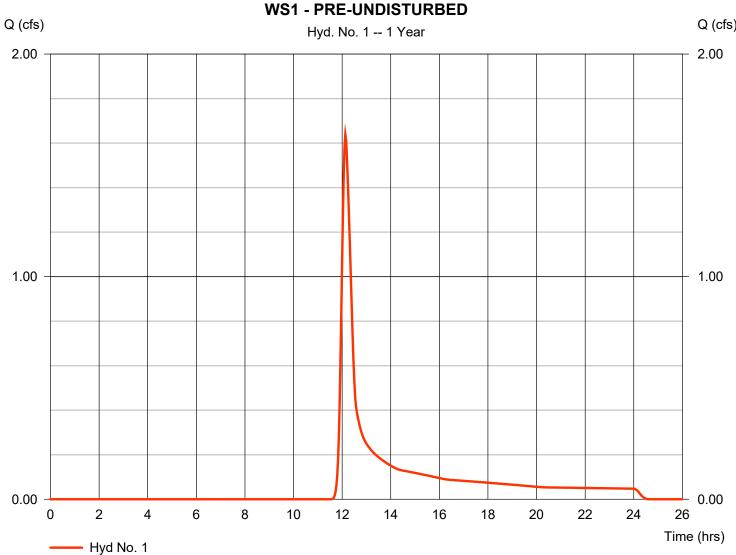
Project: 11711 (SCS only).gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

1 SC 2 SC 4 SC 6 SC 7 Re 9 SC 10 Re	type (origin) SCS Runoff SCS Runoff SCS Runoff SCS Runoff Reservoir SCS Runoff Reservoir Combine SCS Runoff	hyd(s) 6 9 4, 7, 10,	1-yr 1.638 0.276 1.717 0.630 0.000 0.384 0.000	2-yr 2.645 0.498 2.748 0.936 0.000 0.507	3-yr	5-yr 4.369 0.893 4.506 1.450 0.003	10-yr 5.925 1.259 6.090 1.907	25-yr 8.348 1.832 8.557	50-yr 10.48 2.346 10.73	100-yr 12.83 2.919 13.10	Description WS1 - PRE-UNDISTURBED WS1 - PRE-DISTURBED WS1 - POST BYPASS
2 SC 4 SC 6 SC 7 Re 9 SC 10 Re	SCS Runoff SCS Runoff SCS Runoff Reservoir SCS Runoff Reservoir Combine	 6 9	0.276 1.717 0.630 0.000 0.384	0.498 2.748 0.936 0.000		0.893 4.506 1.450	1.259 6.090	1.832	2.346	2.919	WS1 - PRE-DISTURBED
4 SC 6 SC 7 Re 9 SC 10 Re	SCS Runoff SCS Runoff Reservoir SCS Runoff Reservoir Combine	 6 9	1.717 0.630 0.000 0.384	2.748 0.936 0.000		4.506 1.450	6.090				
6 SC 7 Re 9 SC 10 Re	SCS Runoff Reservoir SCS Runoff Reservoir Combine	 6 9	0.630 0.000 0.384	0.936 0.000		1.450		8.557	10.73	13.10	WS1 - POST BYPASS
7 Re 9 SC 10 Re	Reservoir GCS Runoff Reservoir Combine	6 9	0.000	0.000			1.907				
9 SC 10 Re	SCS Runoff Reservoir Combine	9	0.384			0.003		2.599	3.197	3.845	BMP 1 CAPTURED
10 Re	Reservoir Combine	9		0.507		1	0.441	0.855	1.019	1.184	BMP 1 ROUTED
	Combine		0.000			0.700	0.862	1.097	1.295	1.507	BMP 2 CAPTURED
		4, 7, 10,		0.000		0.000	0.000	0.000	0.000	0.000	BMP 2 ROUTED
12 Co			1.717	2.748		4.506	6.090	9.065	11.52	14.04	WS1 POST TOTAL
15 SC			0.421	0.666		1.084	1.467	2.058	2.574	3.139	WS2 - PRE-UNDISTURBED
16 SC	SCS Runoff		0.161	0.261		0.432	0.589	0.834	1.049	1.285	WS2 - PRE-DISTURBED
18 SC	SCS Runoff		0.486	0.755		1.213	1.630	2.269	2.826	3.435	WS2 - POST BYPASS

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

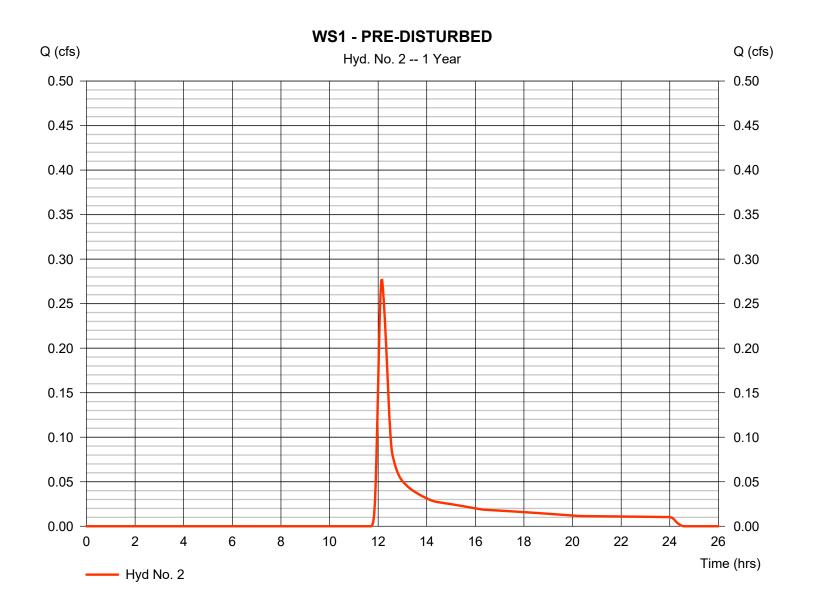

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.638	2	728	6,553				WS1 - PRE-UNDISTURBED
2	SCS Runoff	0.276	2	730	1,262				WS1 - PRE-DISTURBED
4	SCS Runoff	1.717	2	728	6,802				WS1 - POST BYPASS
6	SCS Runoff	0.630	2	726	2,095				BMP 1 CAPTURED
7	Reservoir	0.000	2	800	0	6	471.63	574	BMP 1 ROUTED
9	SCS Runoff	0.384	2	716	776				BMP 2 CAPTURED
10	Reservoir	0.000	2	850	0	9	468.69	248	BMP 2 ROUTED
12	Combine	1.717	2	728	6,802	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	0.421	2	724	1,314				WS2 - PRE-UNDISTURBED
16	SCS Runoff	0.161	2	724	514				WS2 - PRE-DISTURBED
18	SCS Runoff	0.486	2	724	1,491				WS2 - POST BYPASS
	11 (SCS onl)					Period: 1 Ye		Wednesda	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.638 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 6,553 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

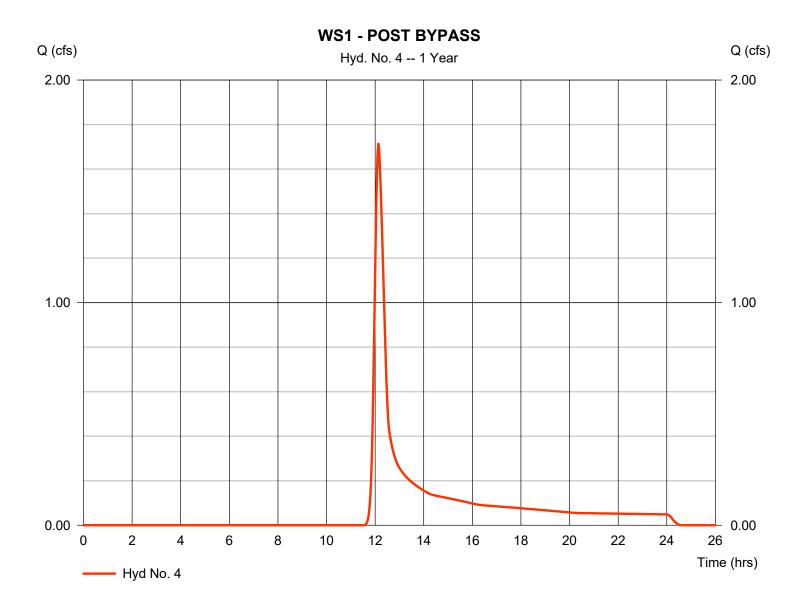

Q (cfs)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.276 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 1,262 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

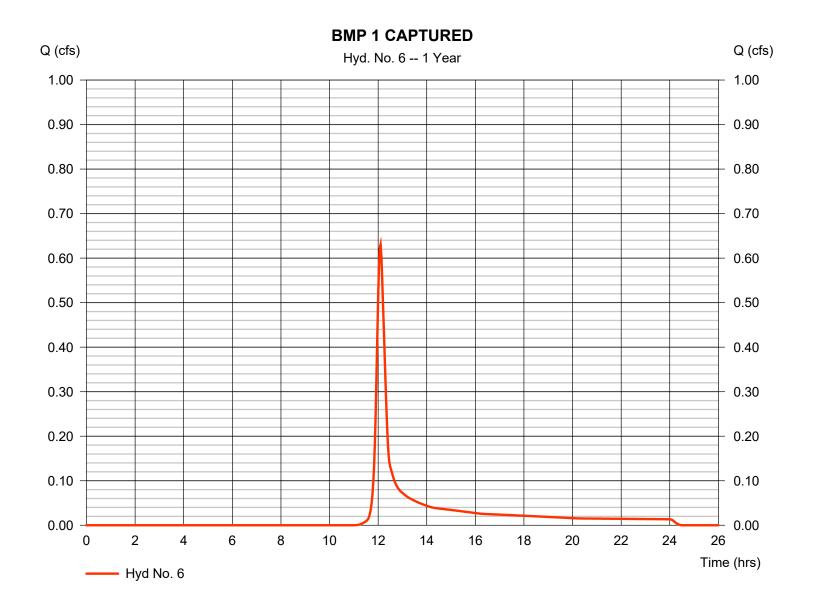

5

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 1.717 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 6,802 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



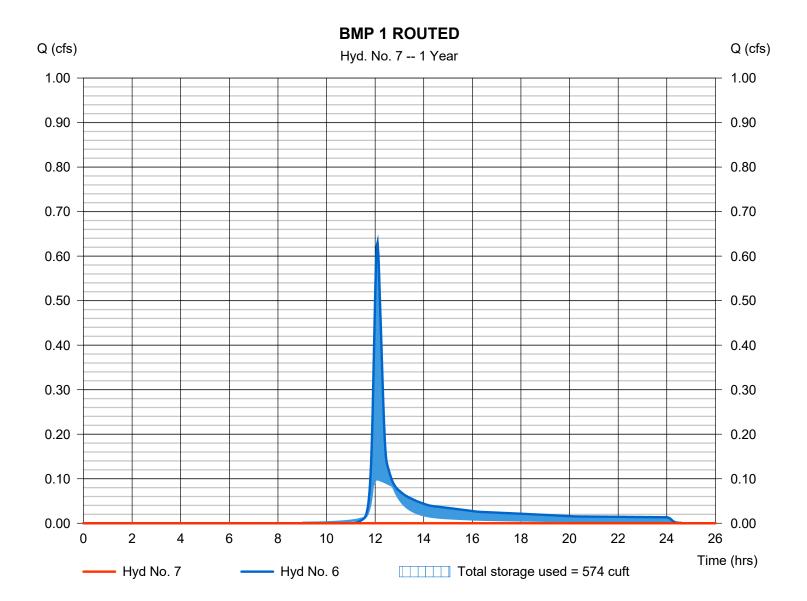
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.630 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 2,095 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024


Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

= Reservoir	Peak discharge	= 0.000 cfs
= 1 yrs	Time to peak	= 13.33 hrs
= 2 min	Hyd. volume	= 0 cuft
= 6 - BMP 1 CAPTURED	Max. Elevation	= 471.63 ft
= BMP 1	Max. Storage	= 574 cuft
	= 1 yrs = 2 min = 6 - BMP 1 CAPTURED	= 1 yrsTime to peak= 2 minHyd. volume= 6 - BMP 1 CAPTUREDMax. Elevation

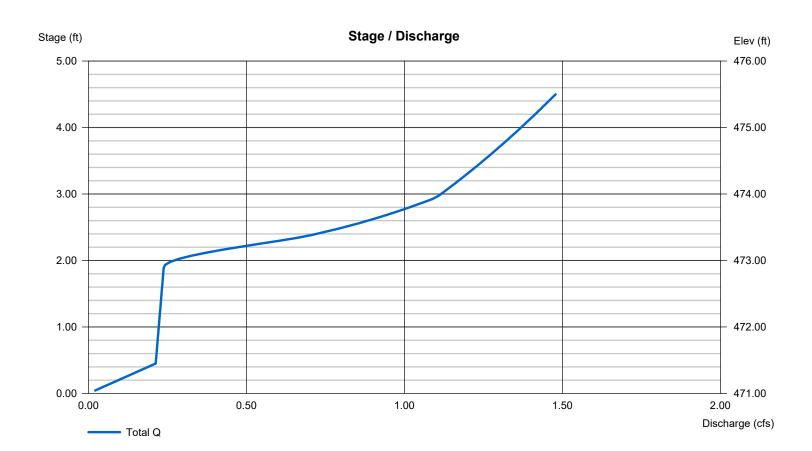
Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Pond Data

Trapezoid -Bottom L x W = 60.0 x 38.0 ft, Side slope = 0.00:1, Bottom elev. = 471.00 ft, Depth = 4.50 ft, Voids = 40.00%

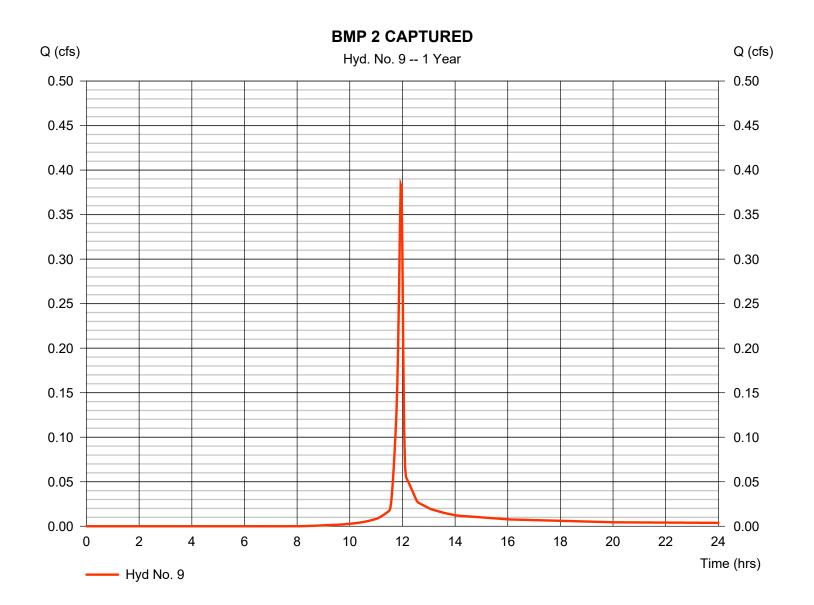

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	471.00	2,280	0	0
0.45	471.45	2,280	410	410
0.90	471.90	2,280	410	821
1.35	472.35	2,280	410	1,231
1.80	472.80	2,280	410	1,642
2.25	473.25	2,280	410	2,052
2.70	473.70	2,280	410	2,462
3.15	474.15	2,280	410	2,873
3.60	474.60	2,280	410	3,283
4.05	475.05	2,280	410	3,694
4.50	475.50	2,280	410	4,104

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 6.00 0.00 0.00 0.00 = 0.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) Span (in) = 6.00 0.00 0.00 0.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 0.00 0.00 0.00 Invert El. (ft) = 472.90 Weir Type = -------------Length (ft) = 50.00 0.00 0.00 0.00 Multi-Stage No No No = No Slope (%) = 2.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.60 0.60 0.60 0.60 = 3.880 (by Wet area) Orifice Coeff. Exfil.(in/hr) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Weir Structures

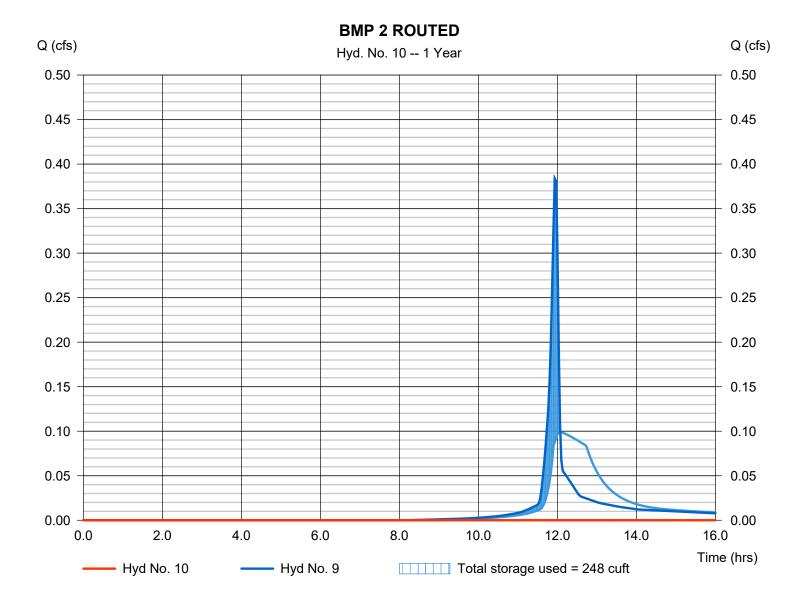
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.384 cfs
Storm frequency	= 1 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 776 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024


Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 1 yrs	Time to peak	= 14.17 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 468.69 ft
Reservoir name	= BMP 2	Max. Storage	= 248 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

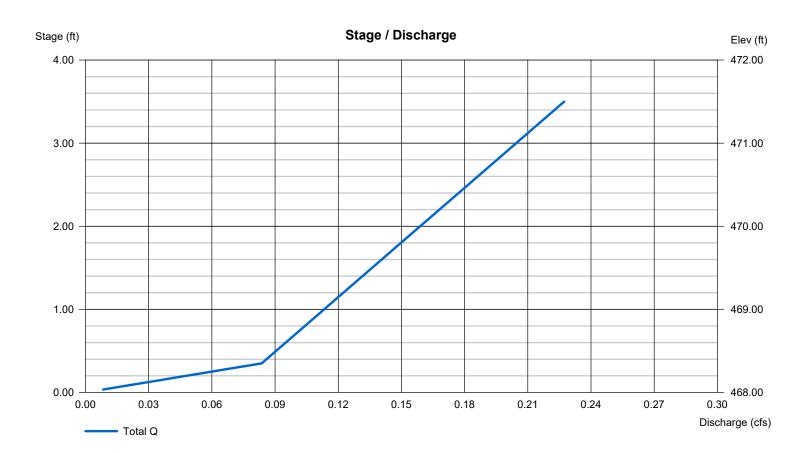
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Pond No. 3 - BMP 2

Pond Data

Trapezoid -Bottom L x W = 300.0 x 3.0 ft, Side slope = 0.00:1, Bottom elev. = 468.00 ft, Depth = 3.50 ft, Voids = 40.00%

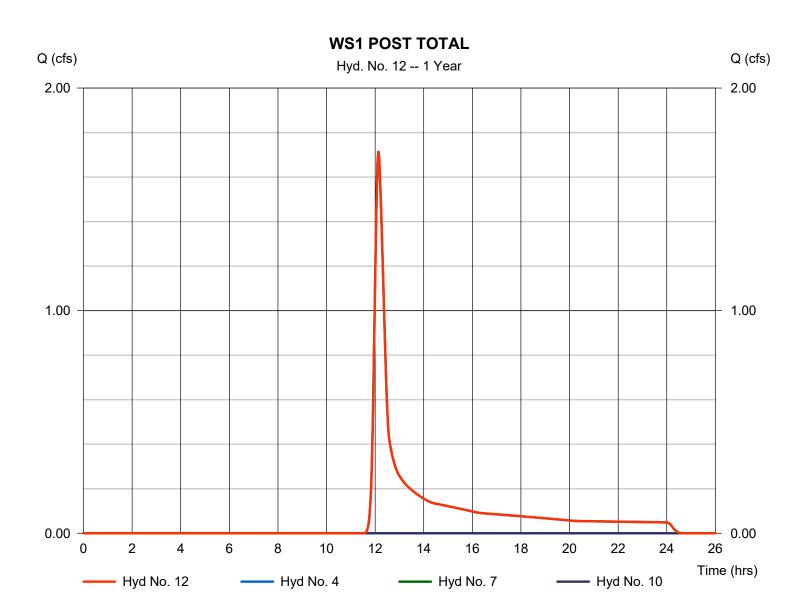

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	468.00	900	0	0
0.35	468.35	900	126	126
0.70	468.70	900	126	252
1.05	469.05	900	126	378
1.40	469.40	900	126	504
1.75	469.75	900	126	630
2.10	470.10	900	126	756
2.45	470.45	900	126	882
2.80	470.80	900	126	1,008
3.15	471.15	900	126	1,134
3.50	471.50	900	126	1,260

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 0.00 0.00 0.00 0.00 = 0.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) = 0.00 0.00 0.00 0.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 Span (in) No. Barrels = 0 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 0.00 Invert El. (ft) = 0.00 0.00 0.00 Weir Type = -------------Length (ft) = 0.00 0.00 0.00 0.00 Multi-Stage No No No = No Slope (%) = 0.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.60 0.60 0.60 = 3.250 (by Wet area) Orifice Coeff. 0.60 Exfil.(in/hr) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


Weir Structures

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type	= Combine	Peak discharge	= 1.717 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 6,802 cuft
Inflow hyds.	= 4, 7, 10	Contrib. drain. area	= 2.790 ac
5	, ,		

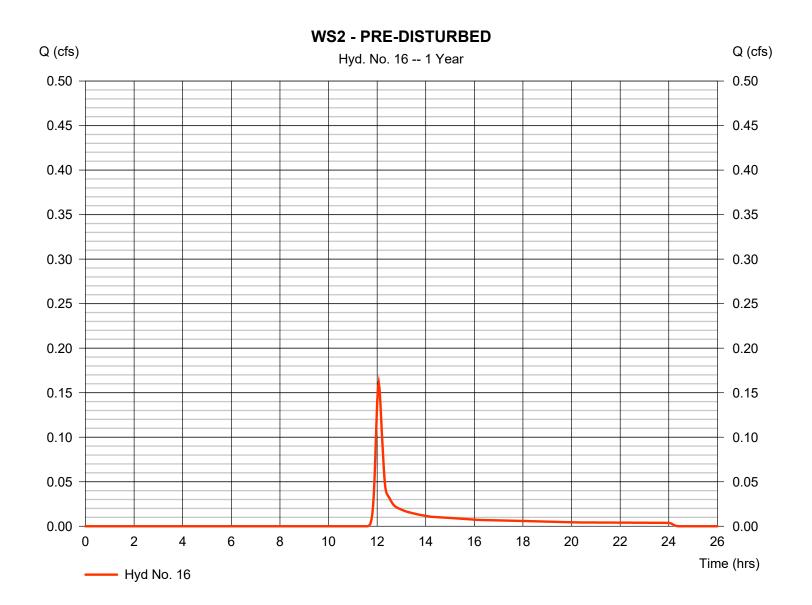

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.421 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 1,314 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

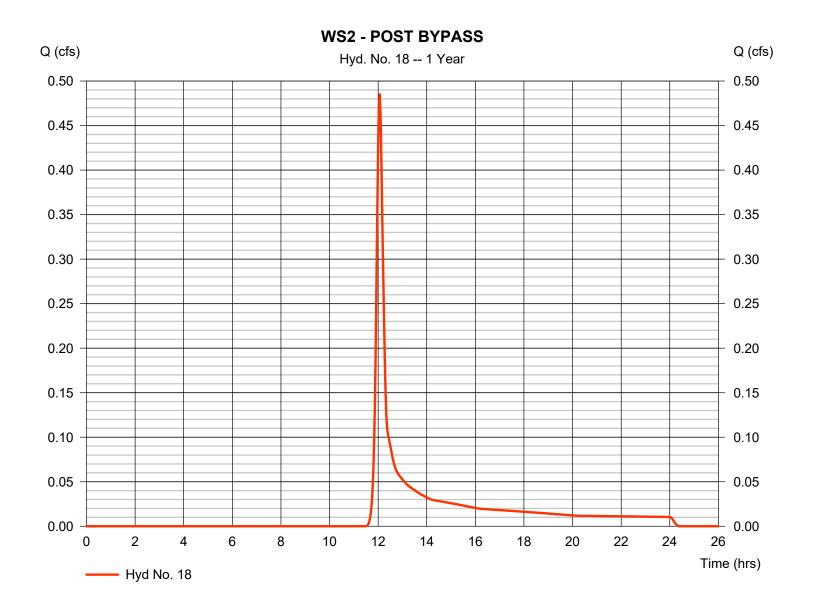

14

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.161 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 514 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	


15

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

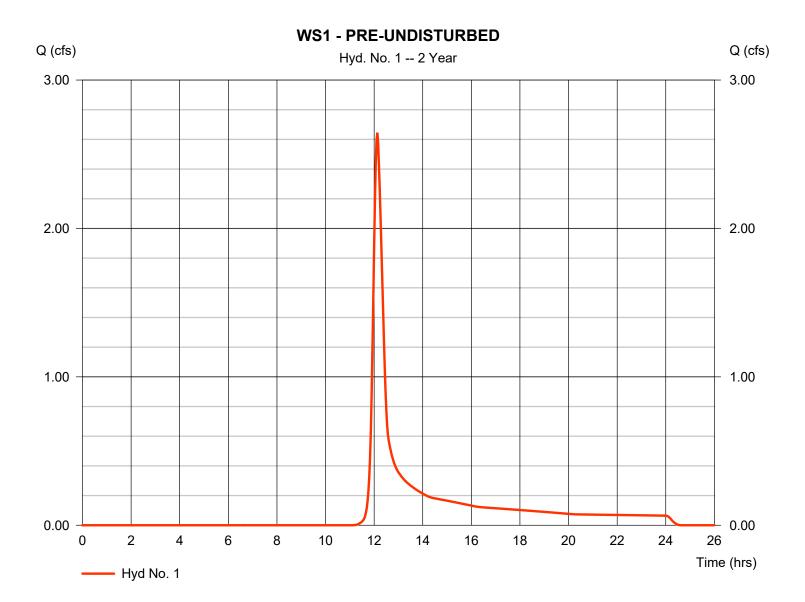
Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 0.486 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 1,491 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 2.72 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

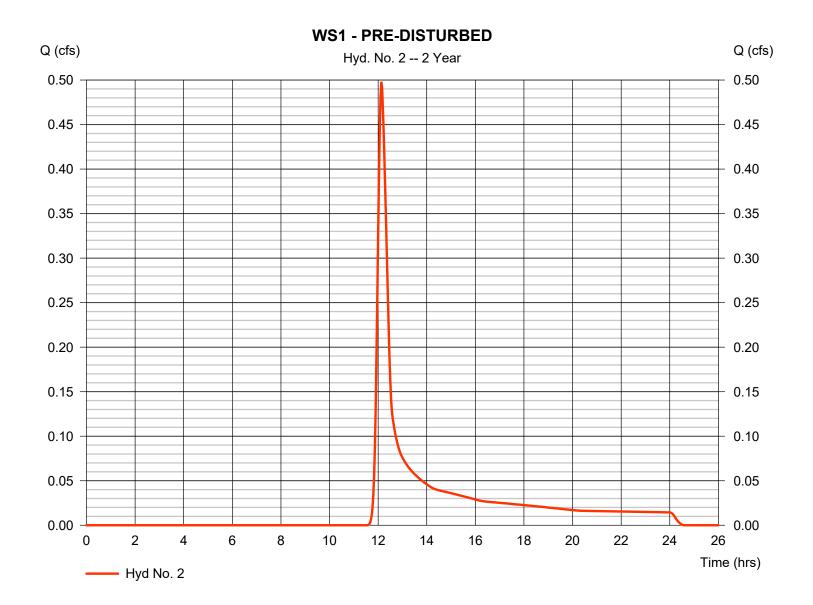

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.645	2	728	9,871				WS1 - PRE-UNDISTURBED
2	SCS Runoff	0.498	2	728	1,994				WS1 - PRE-DISTURBED
4	SCS Runoff	2.748	2	728	10,201				WS1 - POST BYPASS
6	SCS Runoff	0.936	2	726	3,023				BMP 1 CAPTURED
7	Reservoir	0.000	2	840	0	6	472.08	988	BMP 1 ROUTED
9	SCS Runoff	0.507	2	716	1,032				BMP 2 CAPTURED
10	Reservoir	0.000	2	802	0	9	468.97	349	BMP 2 ROUTED
12	Combine	2.748	2	728	10,201	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	0.666	2	724	1,974				WS2 - PRE-UNDISTURBED
16	SCS Runoff	0.261	2	724	782				WS2 - PRE-DISTURBED
18	SCS Runoff	0.755	2	724	2,219				WS2 - POST BYPASS
117	/ 11 (SCS onl	y).gpw		1	Return	Period: 2 Ye	ear	Wednesda	y, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.645 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 9,871 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

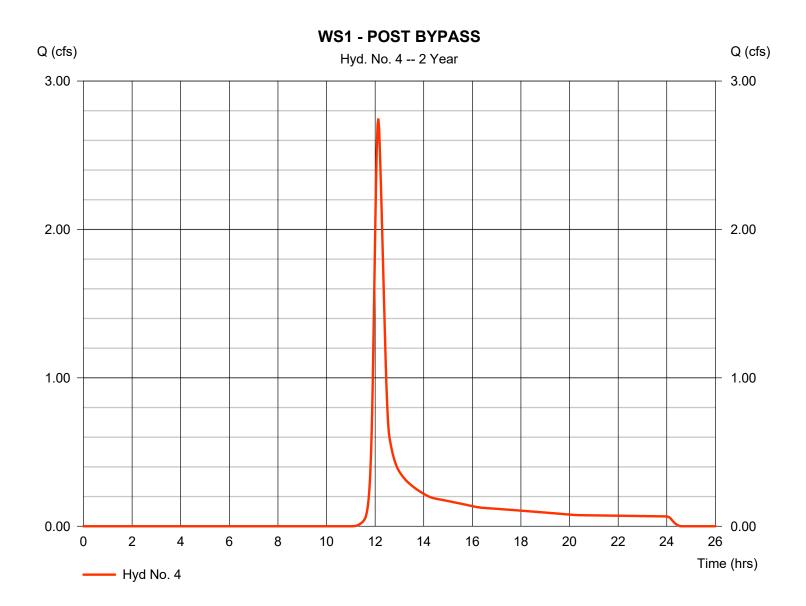

18

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.498 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 1,994 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


19

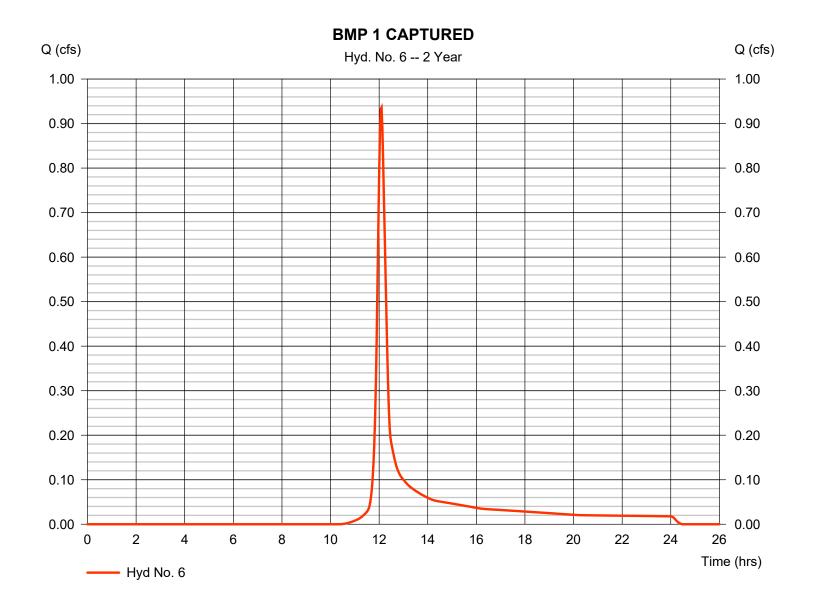
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 2.748 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 10,201 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	

Wednesday, 01 / 10 / 2024


20

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.936 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 3,023 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

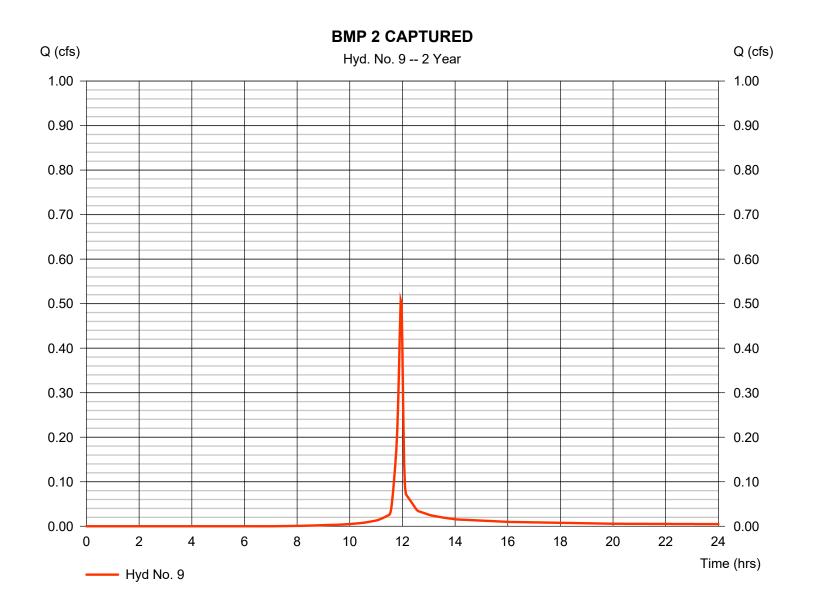

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

Hydrograph type Storm frequency	= Reservoir = 2 yrs	Peak discharge Time to peak	= 0.000 cfs = 14.00 hrs
Time interval Inflow hyd. No.	= 2 min = 2 min = 6 - BMP 1 CAPTURED	Hyd. volume Max. Elevation	= 0 cuft = 472.08 ft
Reservoir name	= BMP 1	Max. Storage	= 988 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



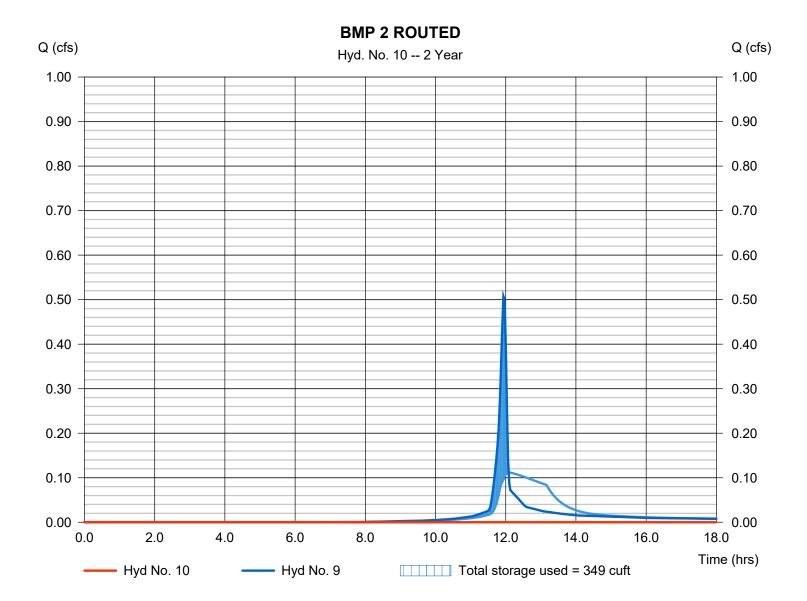
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.507 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 1,032 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

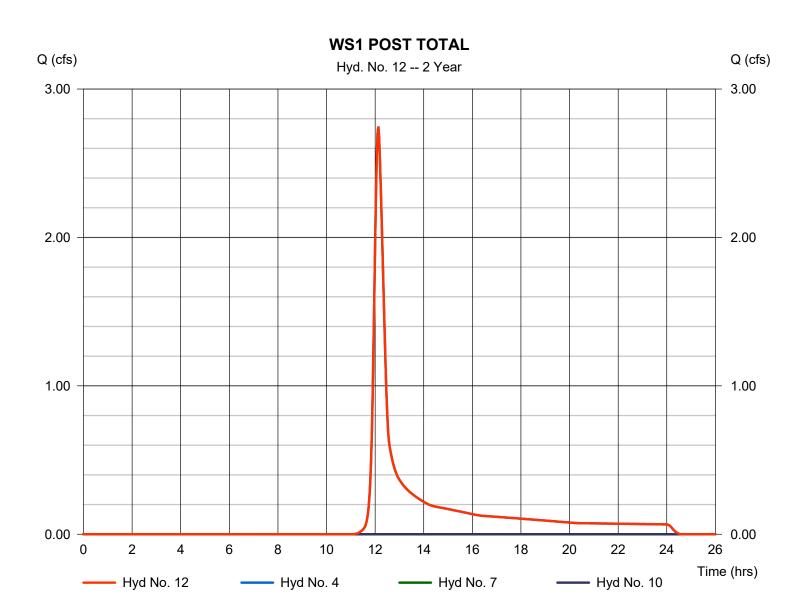

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 13.37 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 468.97 ft
Reservoir name	= BMP 2	Max. Storage	= 349 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

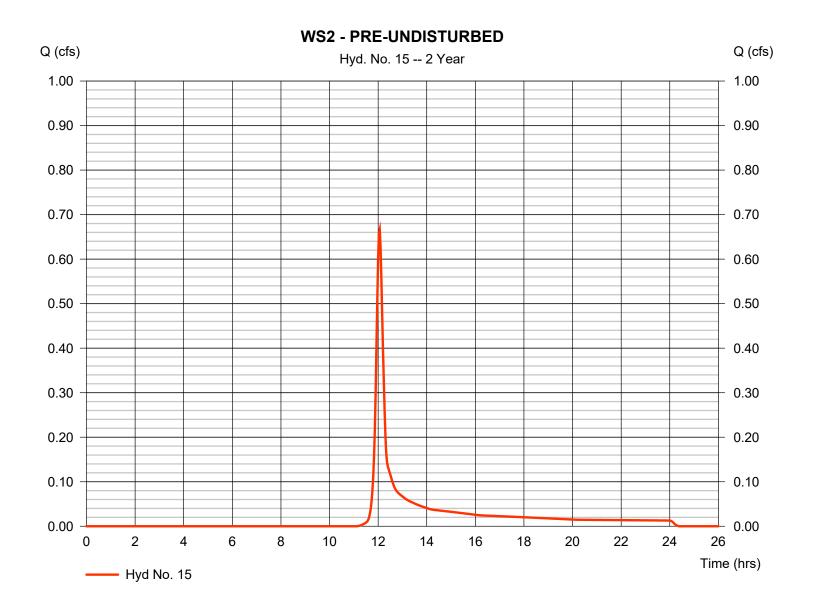


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Storm frequency Time interval	= Combine = 2 yrs = 2 min = 4, 7, 10	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 2.748 cfs = 12.13 hrs = 10,201 cuft = 2.790 ac
innow nyus.	, 7, 10		- 2.730 ac

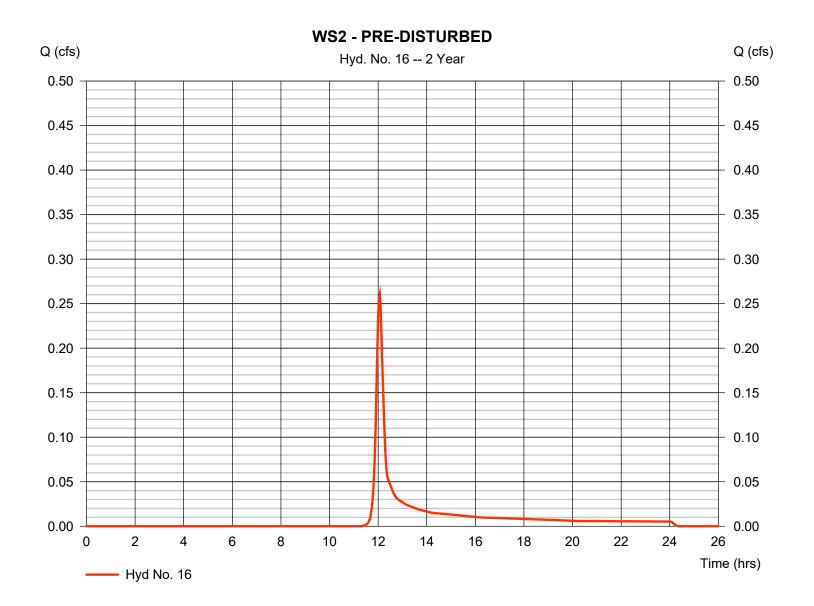

25

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.666 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 1,974 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

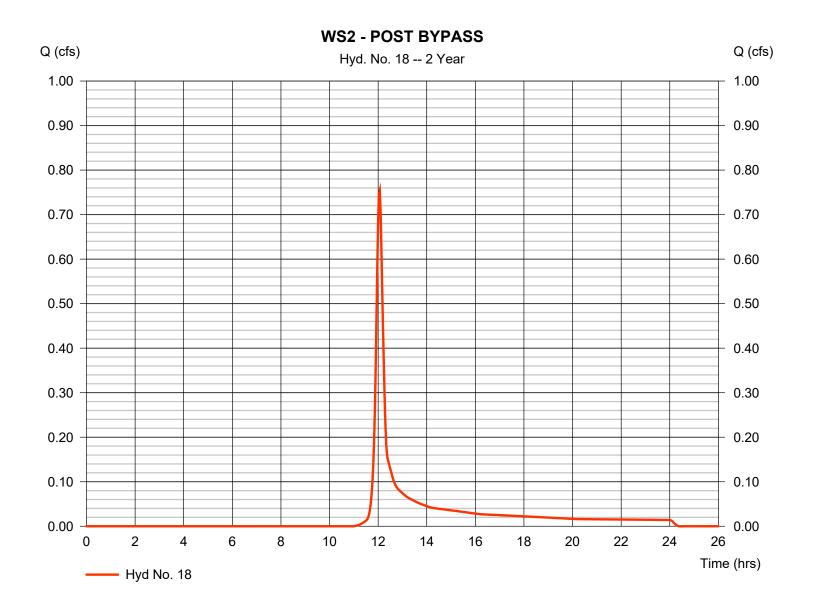

26

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.261 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 782 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	


27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

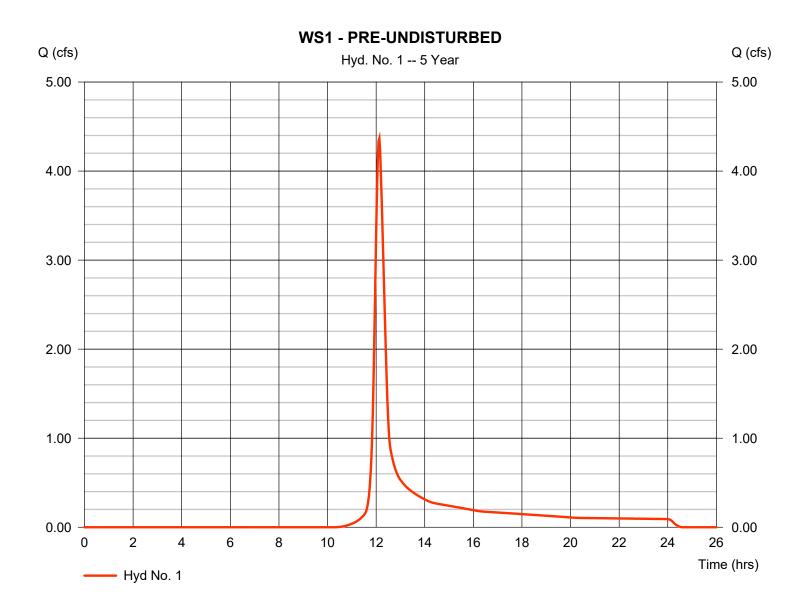
Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 0.755 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 2,219 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 3.27 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

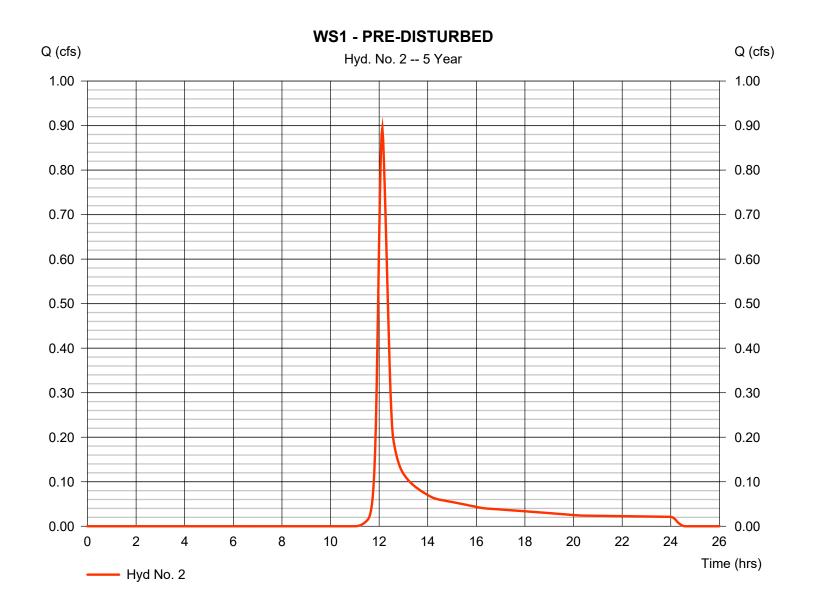

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.369	2	728	15,611				WS1 - PRE-UNDISTURBED
2	SCS Runoff	0.893	2	728	3,298				WS1 - PRE-DISTURBED
4	SCS Runoff	4.506	2	728	16,064				WS1 - POST BYPASS
6	SCS Runoff	1.450	2	724	4,585				BMP 1 CAPTURED
7	Reservoir	0.003	2	754	3	6	472.92	1,754	BMP 1 ROUTED
9	SCS Runoff	0.700	2	716	1,441				BMP 2 CAPTURED
10	Reservoir	0.000	2	834	0	9	469.43	514	BMP 2 ROUTED
12	Combine	4.506	2	728	16,066	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	1.084	2	722	3,116				WS2 - PRE-UNDISTURBED
16	SCS Runoff	0.432	2	724	1,249				WS2 - PRE-DISTURBED
18	SCS Runoff	1.213	2	722	3,469				WS2 - POST BYPASS
11711 (SCS only).gpw			Return Period: 5 Year		Wednesda	Wednesday, 01 / 10 / 2024			

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 4.369 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 15,611 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

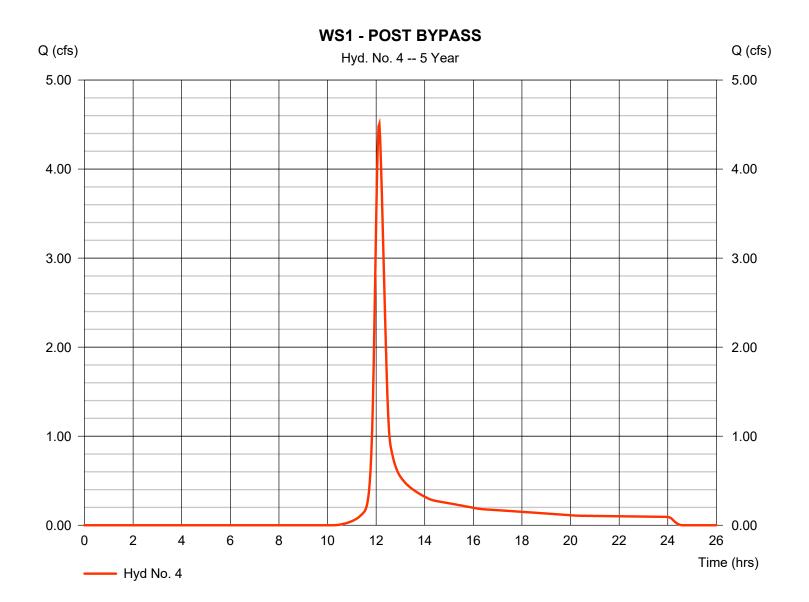


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.893 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 3,298 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

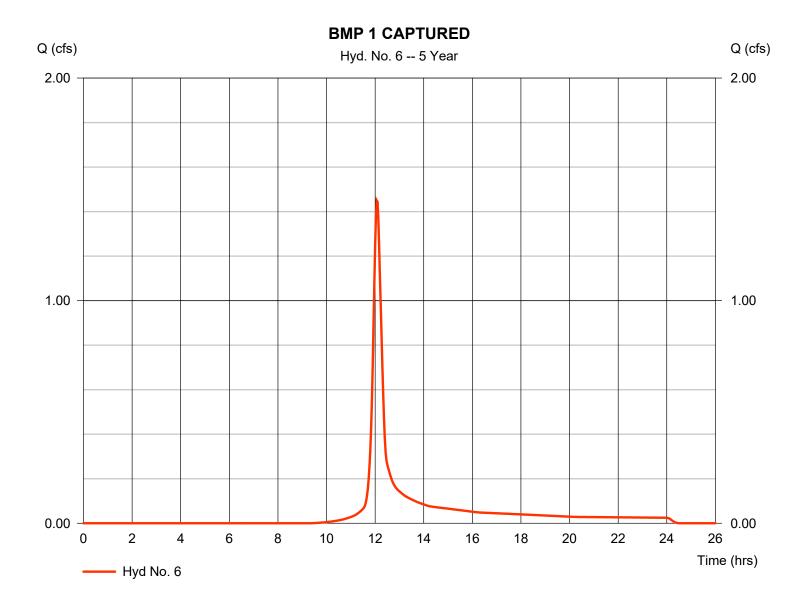

31

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 4.506 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 16,064 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.450 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 4,585 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

33

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

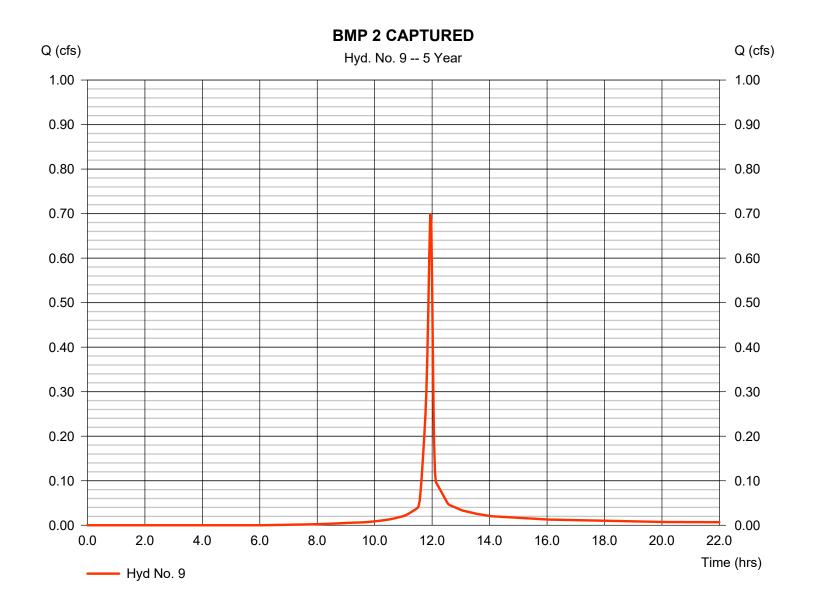

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

servoir	Peak discharge	= 0.003 cfs
vrs	Time to peak	= 12.57 hrs
nin	Hyd. volume	= 3 cuft
BMP 1 CAPTURED	Max. Elevation	= 472.92 ft
1P 1	Max. Storage	= 1,754 cuft
r	rs nin BMP 1 CAPTURED	rs Time to peak nin Hyd. volume BMP 1 CAPTURED Max. Elevation

Storage Indication method used. Exfiltration extracted from Outflow.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

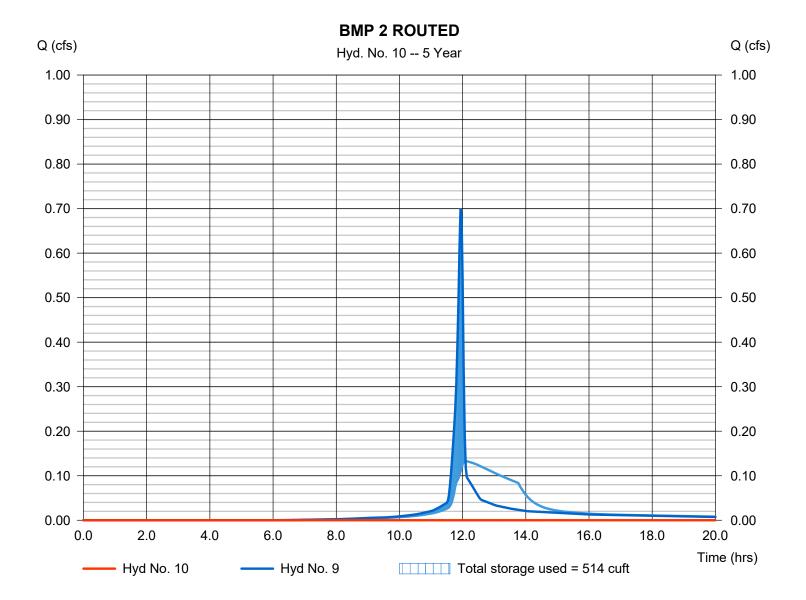
Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.700 cfs
Storm frequency	= 5 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 1,441 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

35

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

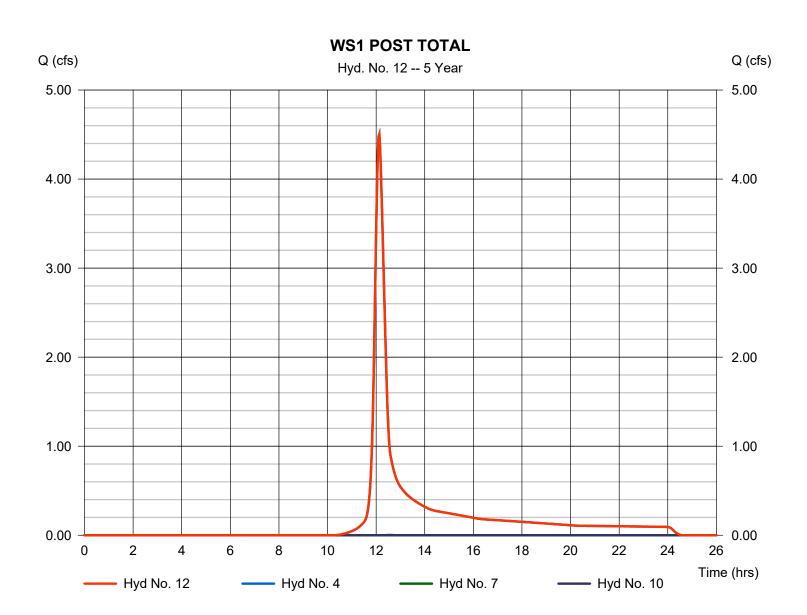

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 5 yrs	Time to peak	= 13.90 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 469.43 ft
Reservoir name	= BMP 2	Max. Storage	= 514 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

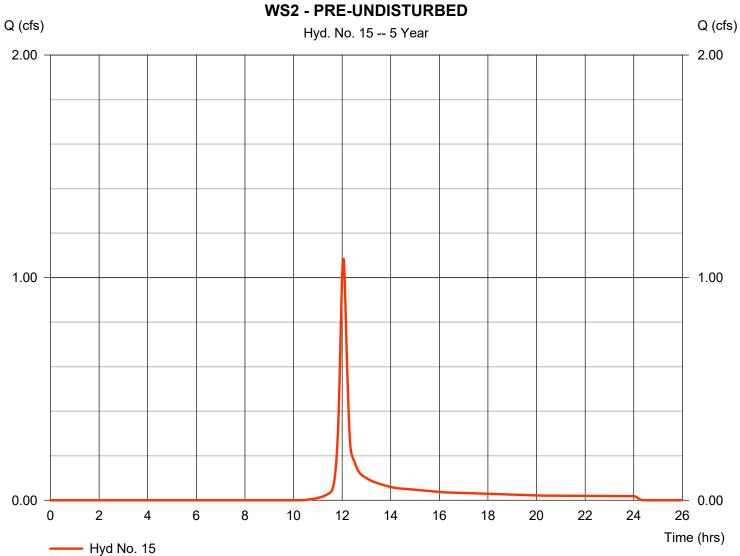


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type	= Combine	Peak discharge	= 4.506 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 16,066 cuft
Inflow hyds.	= 4, 7, 10	Contrib. drain. area	= 2.790 ac
5			

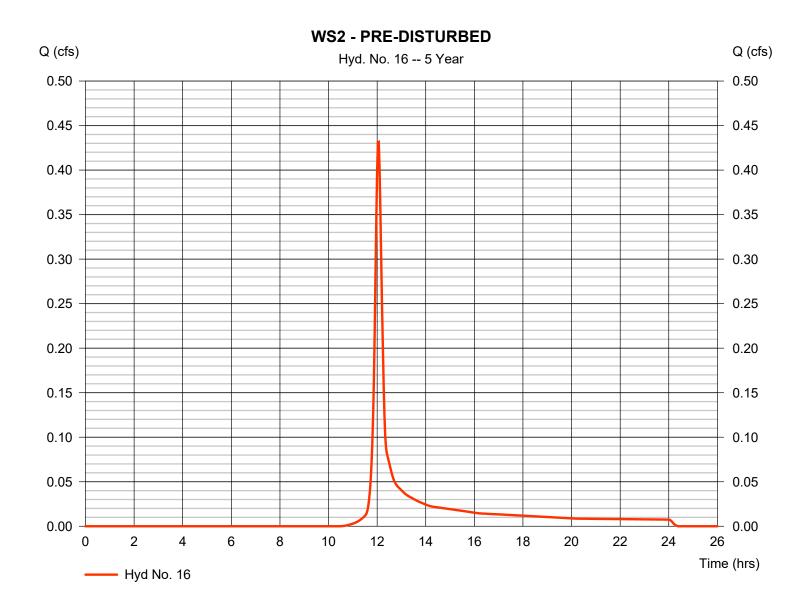

π

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.084 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 3,116 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

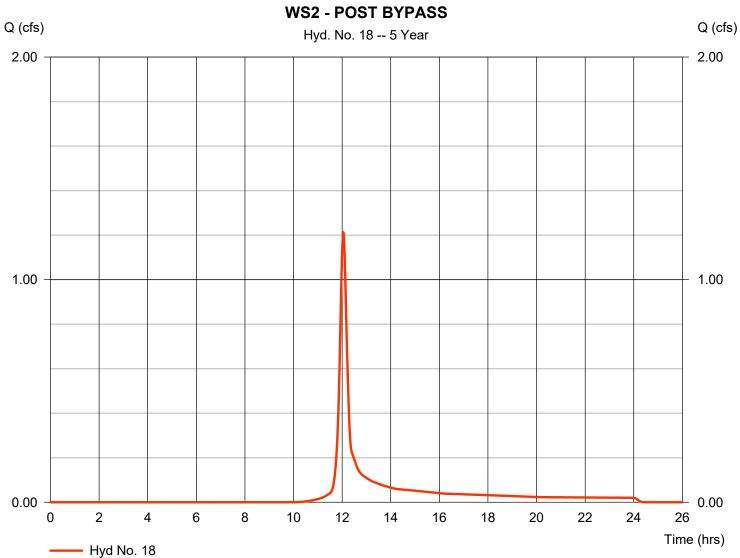


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.432 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 1,249 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 18

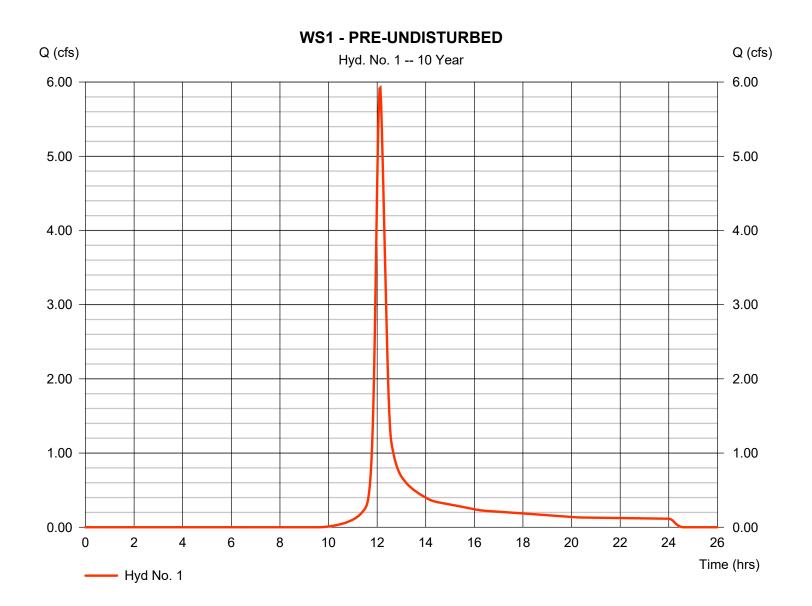
WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 1.213 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 3,469 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.11 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

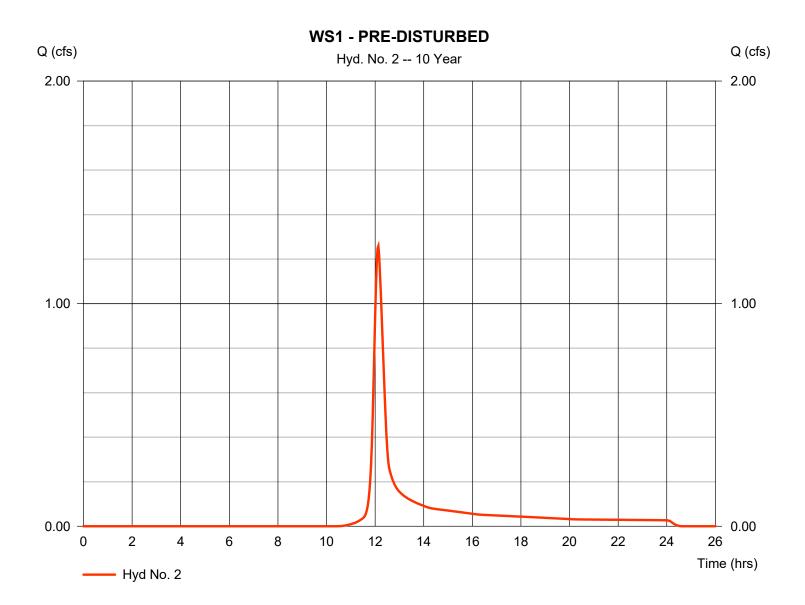

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.925	2	728	20,851				WS1 - PRE-UNDISTURBED
2	SCS Runoff	1.259	2	728	4,515				WS1 - PRE-DISTURBED
4	SCS Runoff	6.090	2	728	21,405				WS1 - POST BYPASS
6	SCS Runoff	1.907	2	724	5,982				BMP 1 CAPTURED
7	Reservoir	0.441	2	740	644	6	473.37	2,158	BMP 1 ROUTED
9	SCS Runoff	0.862	2	716	1,791				BMP 2 CAPTURED
10	Reservoir	0.000	2	882	0	9	469.83	657	BMP 2 ROUTED
12	Combine	6.090	2	728	22,049	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	1.467	2	722	4,157				WS2 - PRE-UNDISTURBED
16	SCS Runoff	0.589	2	722	1,677				WS2 - PRE-DISTURBED
18	SCS Runoff	1.630	2	722	4,604				WS2 - POST BYPASS
117	11 (SCS onl	y).gpw			Return	Period: 10 \	/ear	Wednesda	y, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 5.925 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 20,851 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

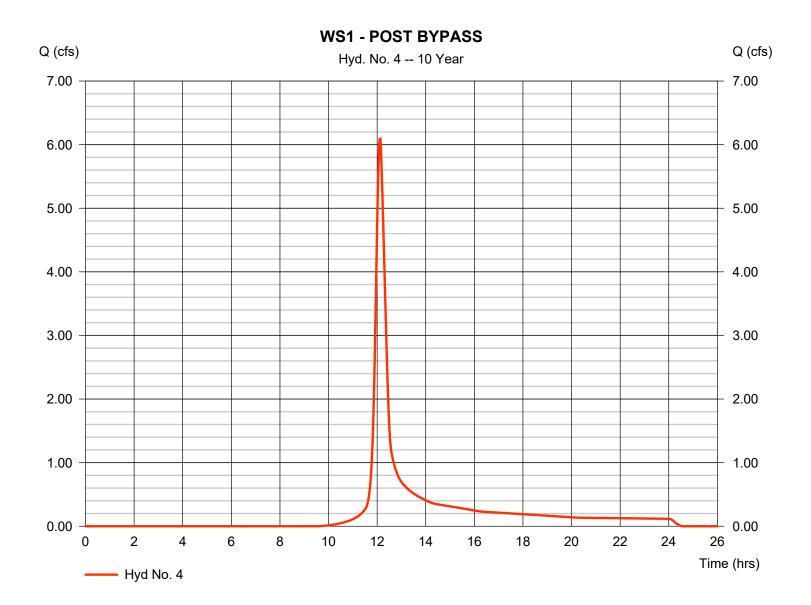


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.259 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 4,515 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 6.090 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 21,405 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

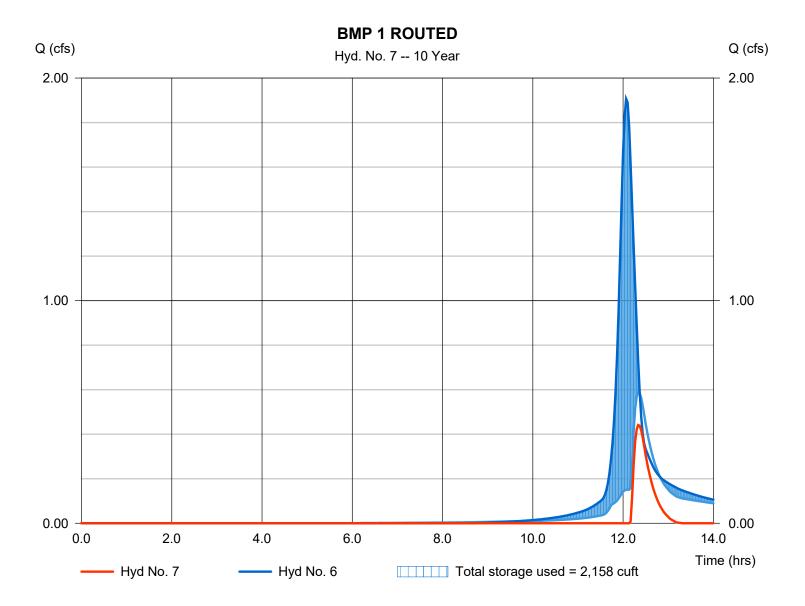
Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.907 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 5,982 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

45

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

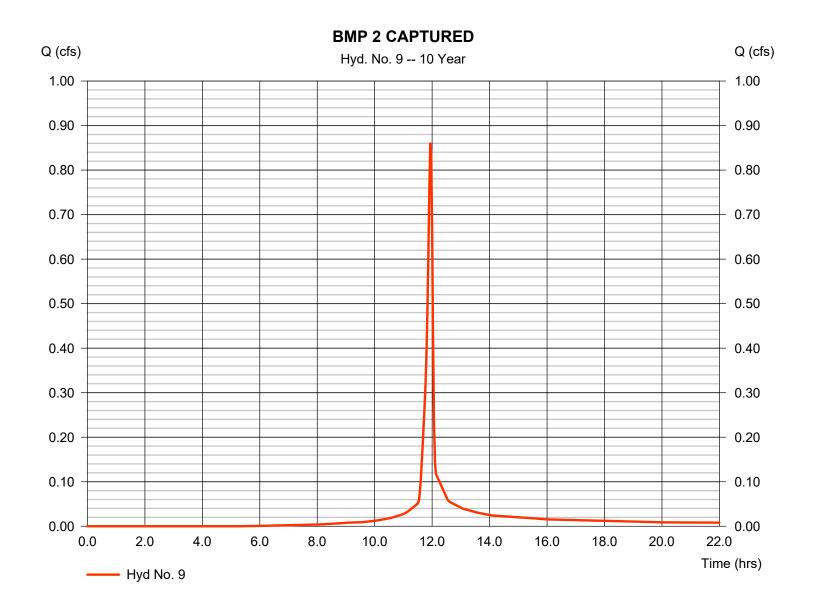

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.441 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 644 cuft
Inflow hyd. No.	= 6 - BMP 1 CAPTURED	Max. Elevation	= 473.37 ft
Reservoir name	= BMP 1	Max. Storage	= 2,158 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



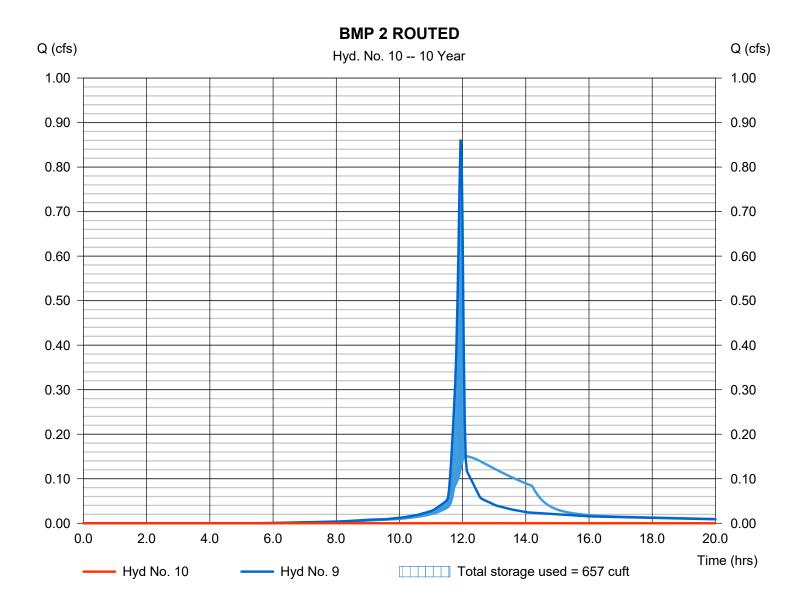
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.862 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 1,791 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

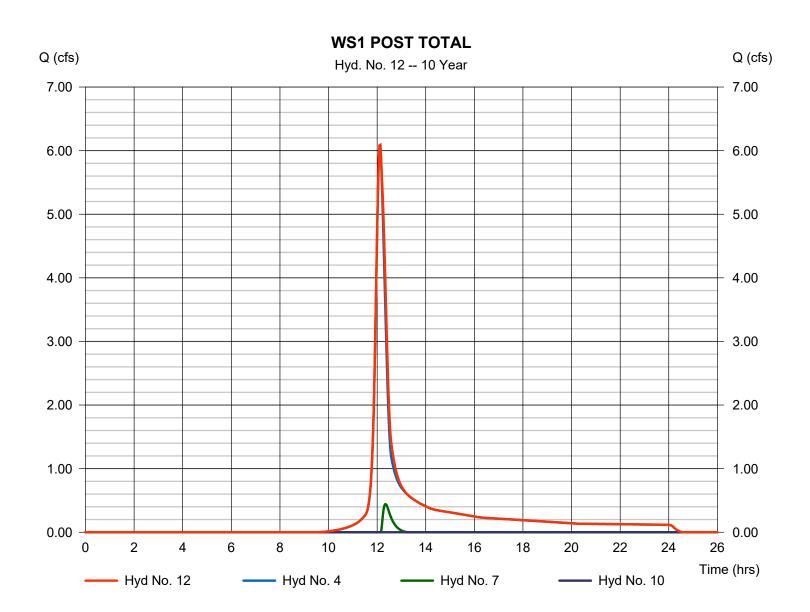

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 10 yrs	Time to peak	= 14.70 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 469.83 ft
Reservoir name	= BMP 2	Max. Storage	= 657 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

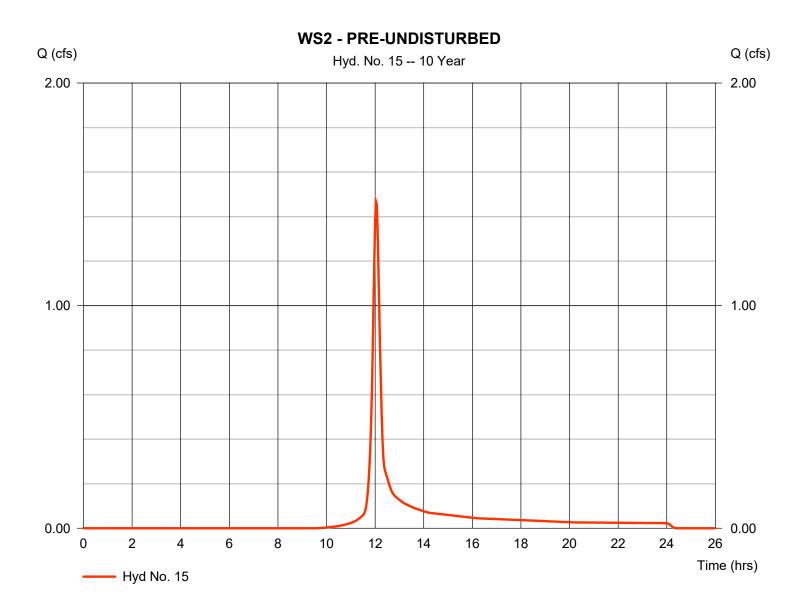


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type Storm frequency Time interval Inflow hyds.	 Combine 10 yrs 2 min 4, 7, 10 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	 = 6.090 cfs = 12.13 hrs = 22,049 cuft = 2.790 ac

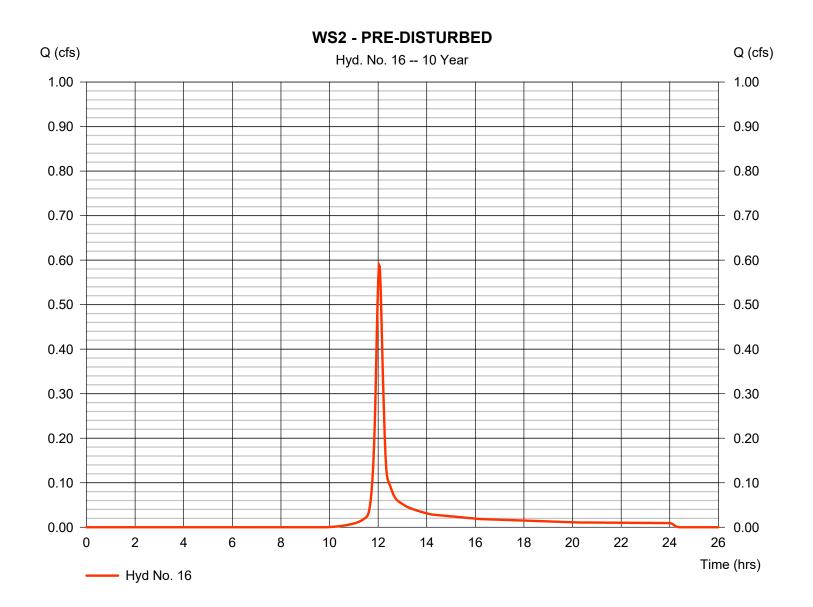


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.467 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 4,157 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

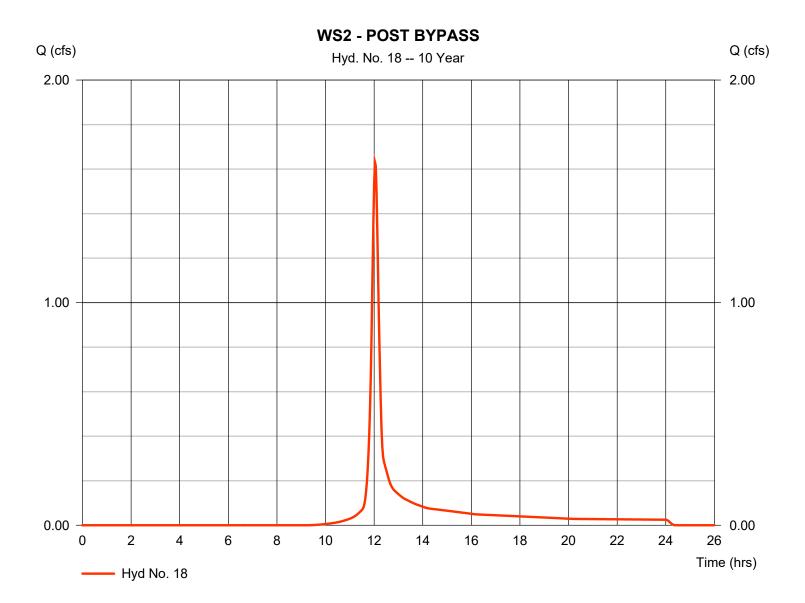

Wednesday, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.589 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 1,677 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


51

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

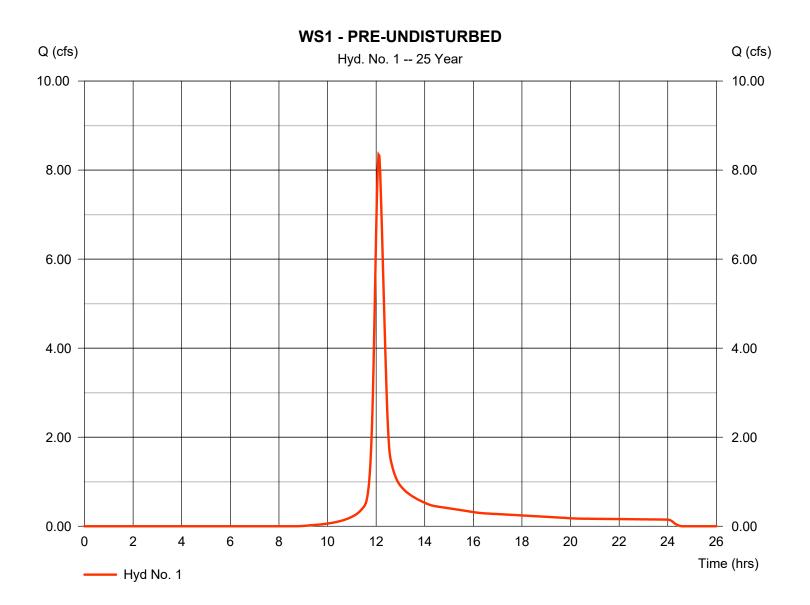
Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 1.630 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 4,604 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 4.81 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

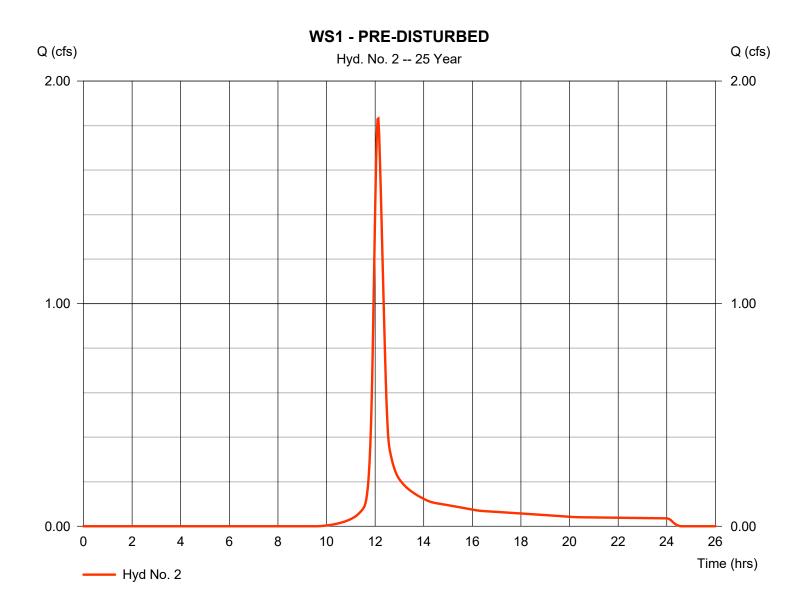

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.348	2	726	29,018				WS1 - PRE-UNDISTURBED
2	SCS Runoff	1.832	2	728	6,443				WS1 - PRE-DISTURBED
4	SCS Runoff	8.557	2	726	29,716				WS1 - POST BYPASS
6	SCS Runoff	2.599	2	724	8,124				BMP 1 CAPTURED
7	Reservoir	0.855	2	738	1,847	6	473.99	2,726	BMP 1 ROUTED
9	SCS Runoff	1.097	2	716	2,313				BMP 2 CAPTURED
10	Reservoir	0.000	2	938	0	9	470.42	871	BMP 2 ROUTED
12	Combine	9.065	2	728	31,563	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	2.058	2	722	5,778				WS2 - PRE-UNDISTURBED
16	SCS Runoff	0.834	2	722	2,346				WS2 - PRE-DISTURBED
18	SCS Runoff	2.269	2	722	6,365				WS2 - POST BYPASS
117	11 (SCS onl)	y).gpw			Return	Period: 25 \	/ear	Wednesda	y, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 8.348 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 29,018 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

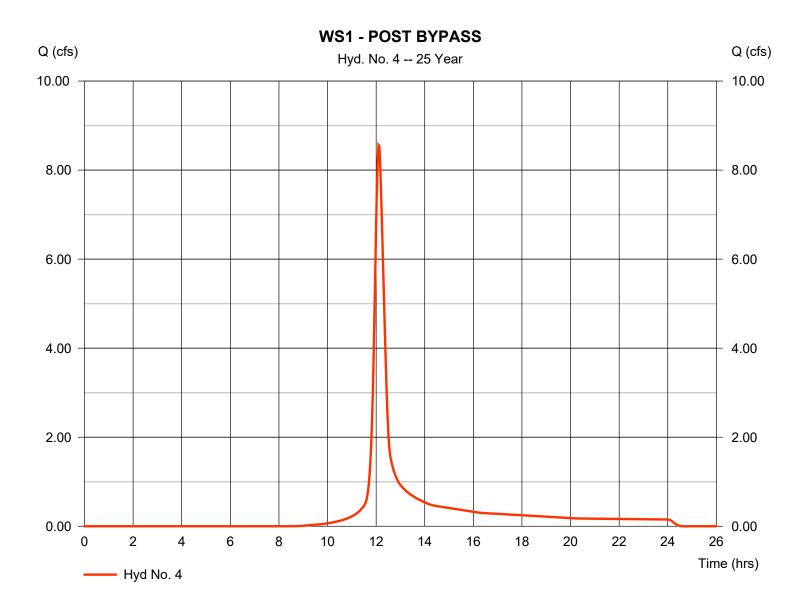

54

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.832 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 6,443 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

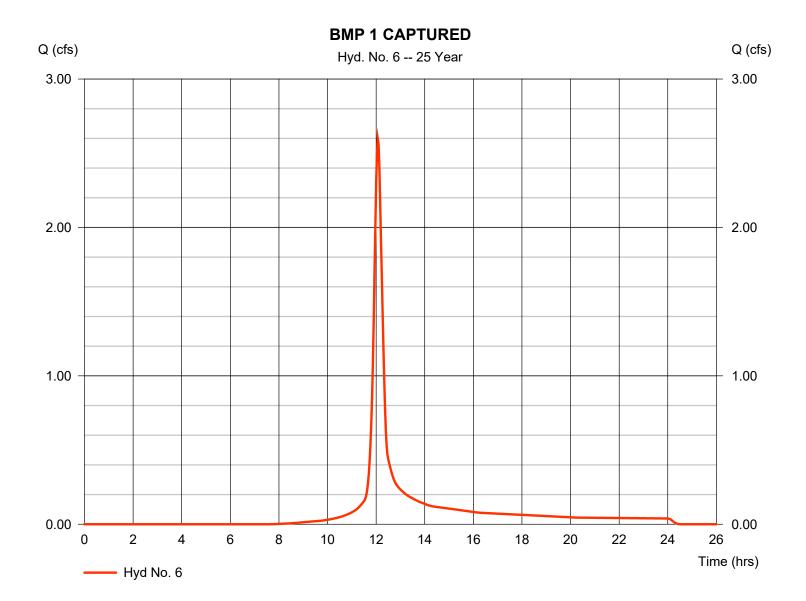

55

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 8.557 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 29,716 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



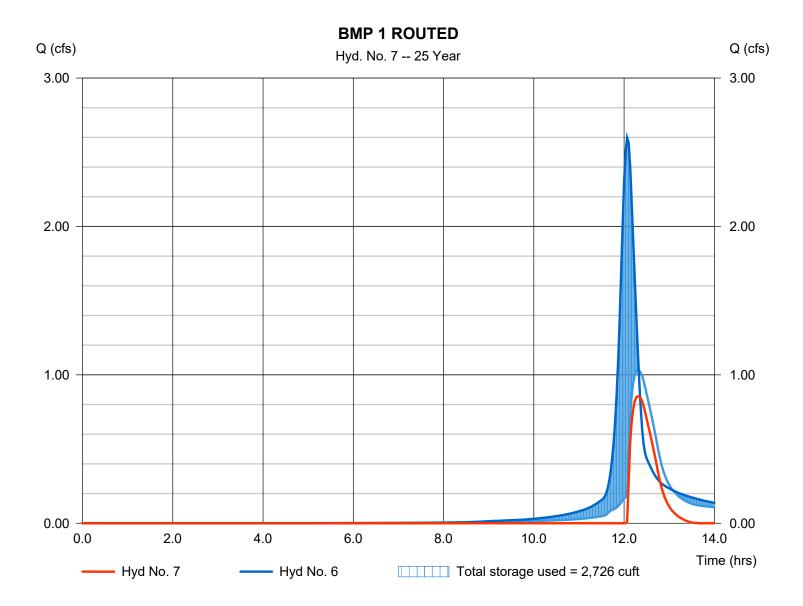
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.599 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 8,124 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

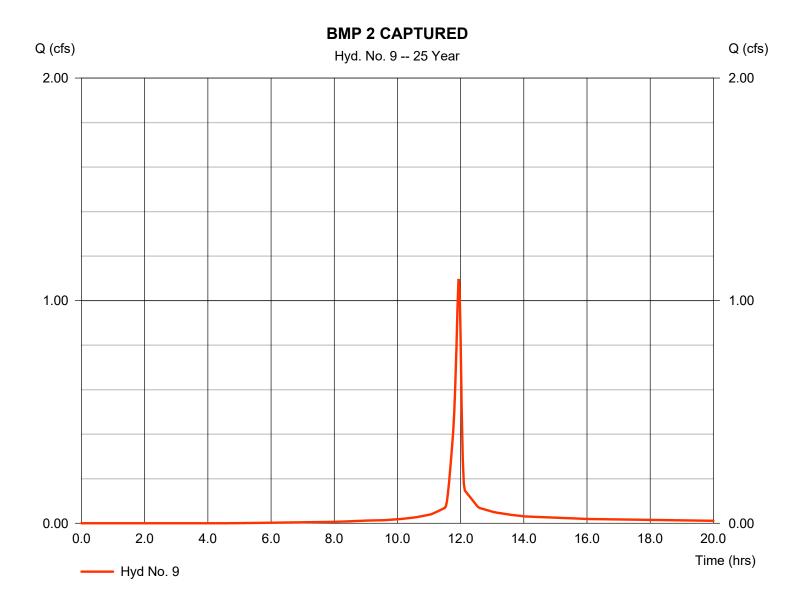

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

= Reservoir	Peak discharge	= 0.855 cfs
= 25 yrs	Time to peak	= 12.30 hrs
= 2 min	Hyd. volume	= 1,847 cuft
= 6 - BMP 1 CAPTURED	Max. Elevation	= 473.99 ft
= BMP 1	Max. Storage	= 2,726 cuft
	= 25 yrs = 2 min = 6 - BMP 1 CAPTURED	= 25 yrsTime to peak= 2 minHyd. volume= 6 - BMP 1 CAPTUREDMax. Elevation

Storage Indication method used. Exfiltration extracted from Outflow.



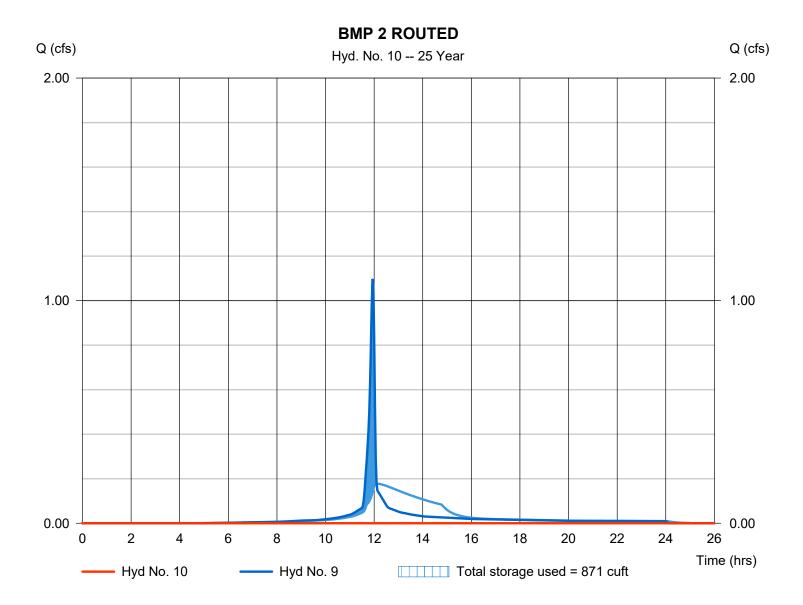
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.097 cfs
Storm frequency	= 25 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 2,313 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

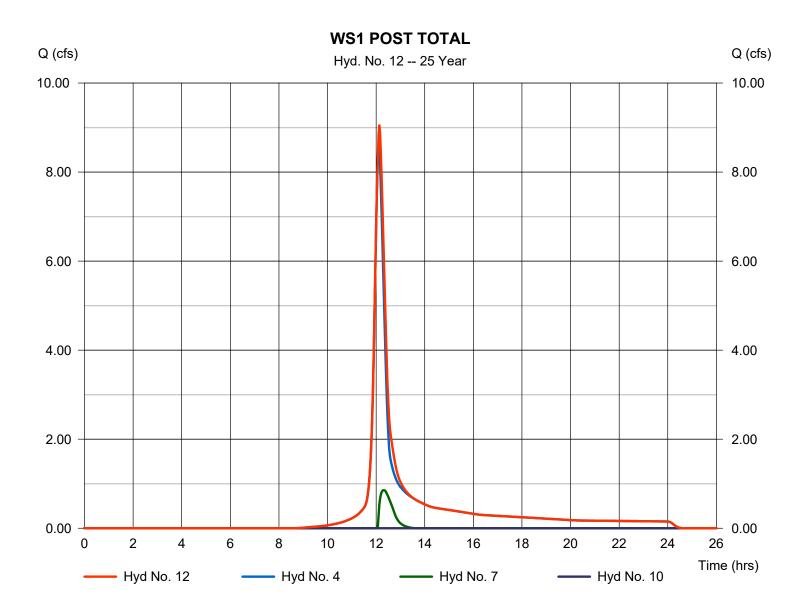

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= 15.63 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 470.42 ft
Reservoir name	= BMP 2	Max. Storage	= 871 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

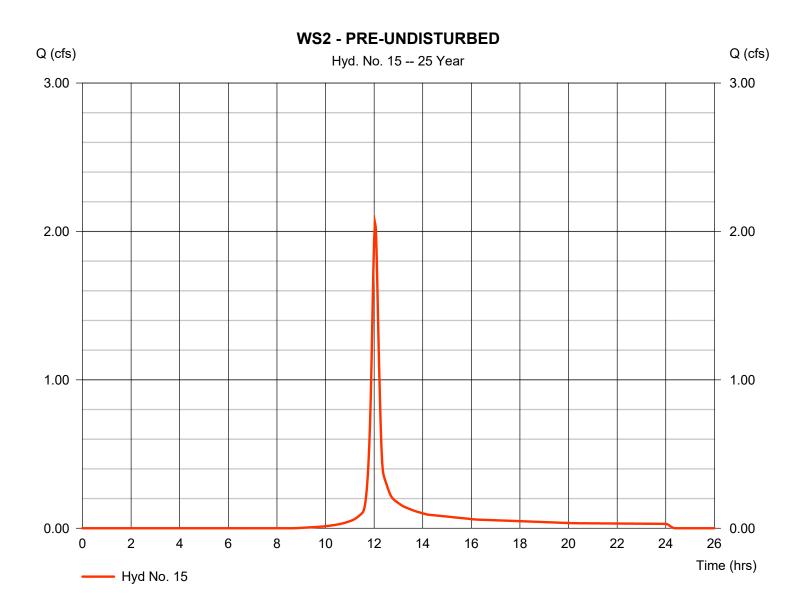


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type	= Combine	Peak discharge	= 9.065 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 31,563 cuft
Inflow hyds.	= 4, 7, 10	Contrib. drain. area	= 2.790 ac

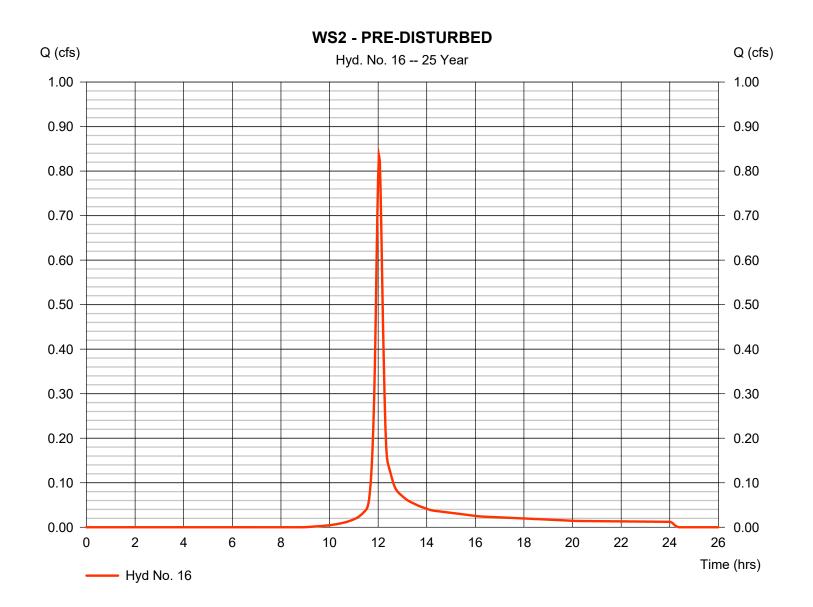

61

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.058 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 5,778 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

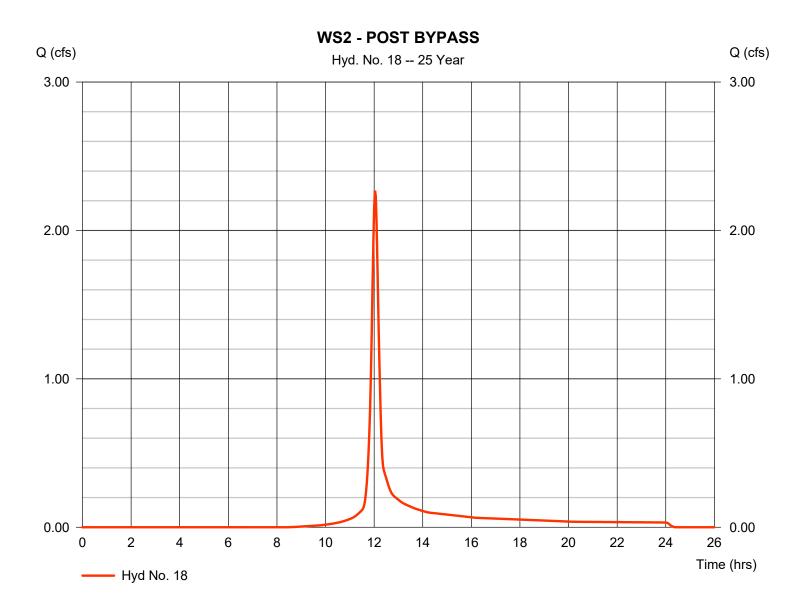


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 0.834 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 2,346 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


63

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

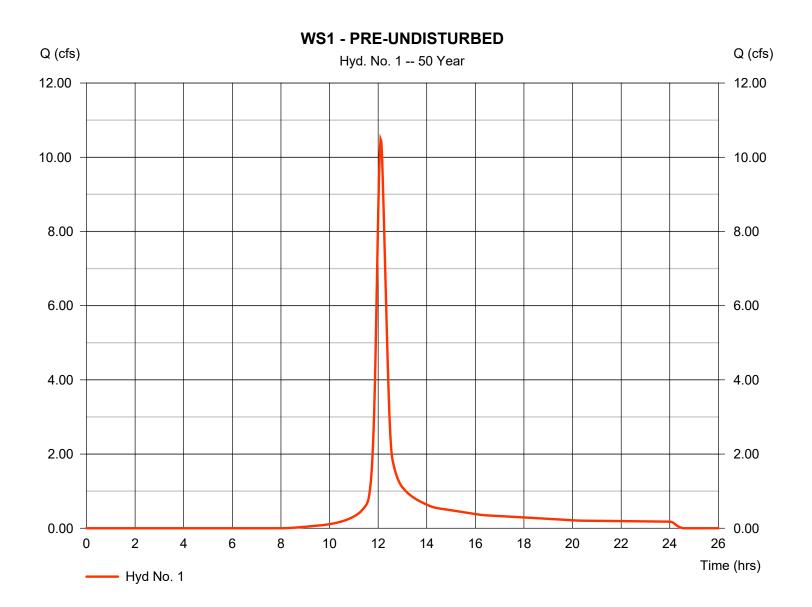
Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 2.269 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 6,365 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 5.83 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

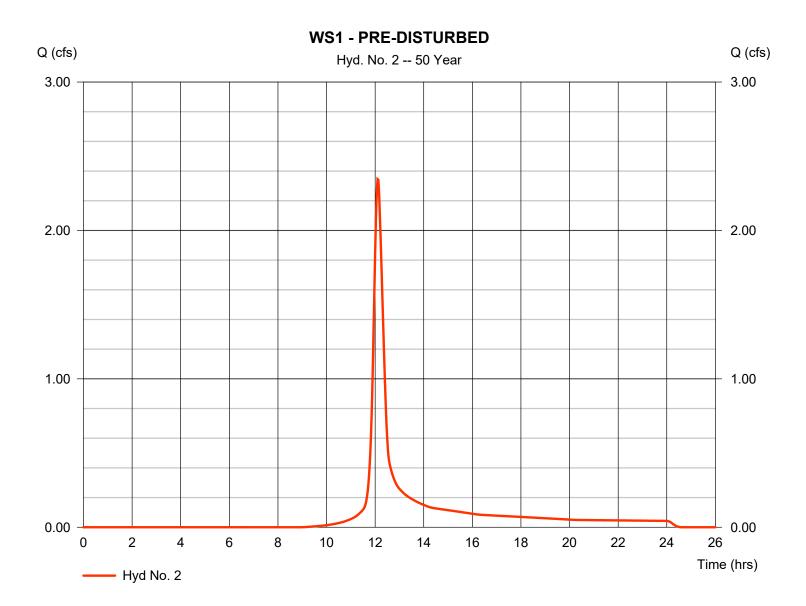

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.48	2	726	36,264				WS1 - PRE-UNDISTURBED
2	SCS Runoff	2.346	2	726	8,176				WS1 - PRE-DISTURBED
4	SCS Runoff	10.73	2	726	37,082				WS1 - POST BYPASS
6	SCS Runoff	3.197	2	724	10,002				BMP 1 CAPTURED
7	Reservoir	1.019	2	740	2,943	6	474.66	3,334	BMP 1 ROUTED
9	SCS Runoff	1.295	2	716	2,760				BMP 2 CAPTURED
10	Reservoir	0.000	2	926	0	9	470.93	1,054	BMP 2 ROUTED
12	Combine	11.52	2	728	40,025	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	2.574	2	722	7,215				WS2 - PRE-UNDISTURBED
16	SCS Runoff	1.049	2	722	2,942				WS2 - PRE-DISTURBED
18	SCS Runoff	2.826	2	722	7,922				WS2 - POST BYPASS
117	11 (SCS onl	y).gpw			Return	Period: 50 \	Year	Wednesda	y, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 10.48 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 36,264 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

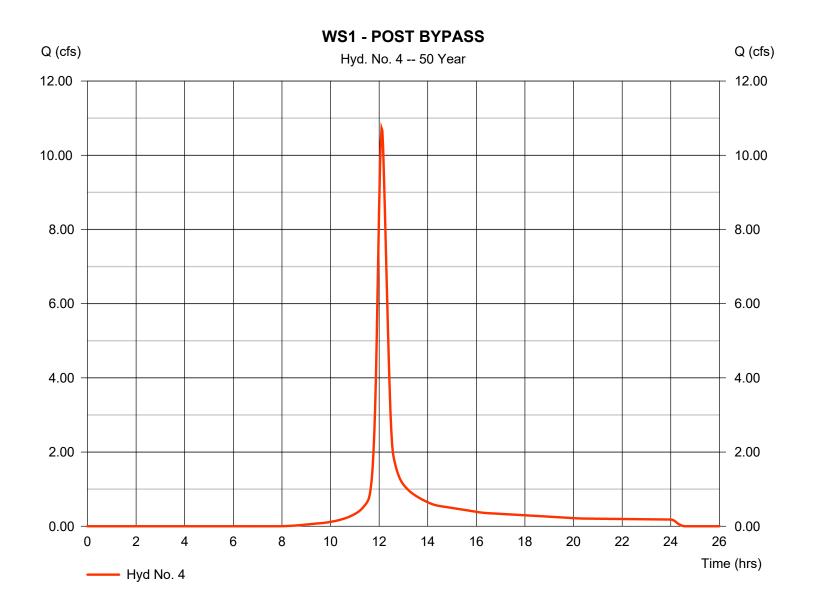


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.346 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 8,176 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

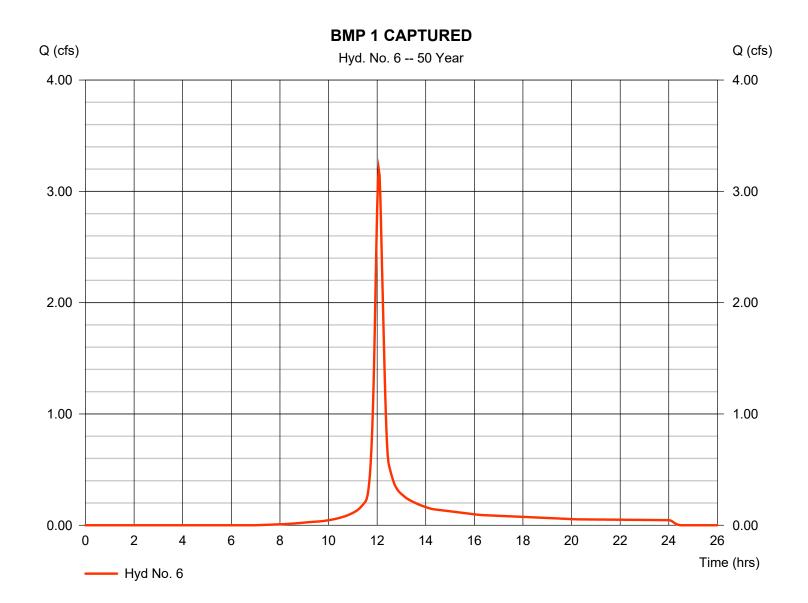


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 10.73 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 37,082 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

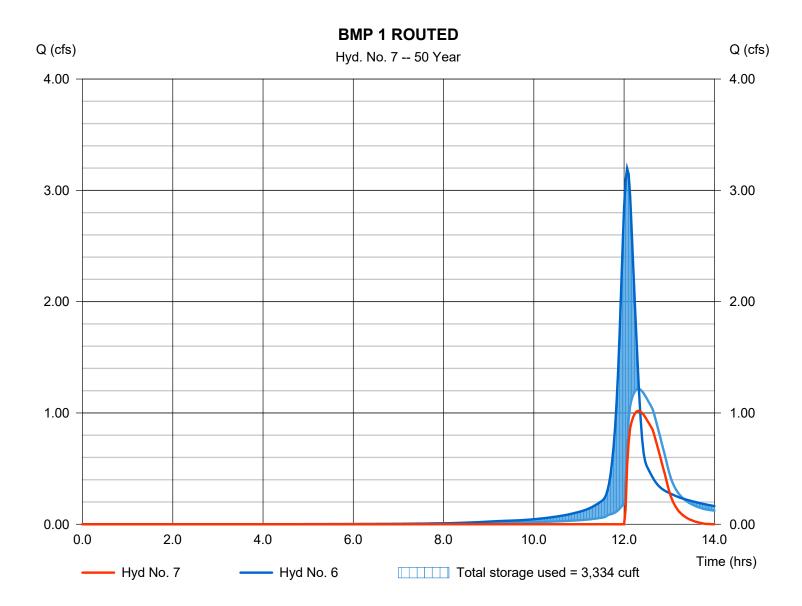
Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 3.197 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 10,002 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

69

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

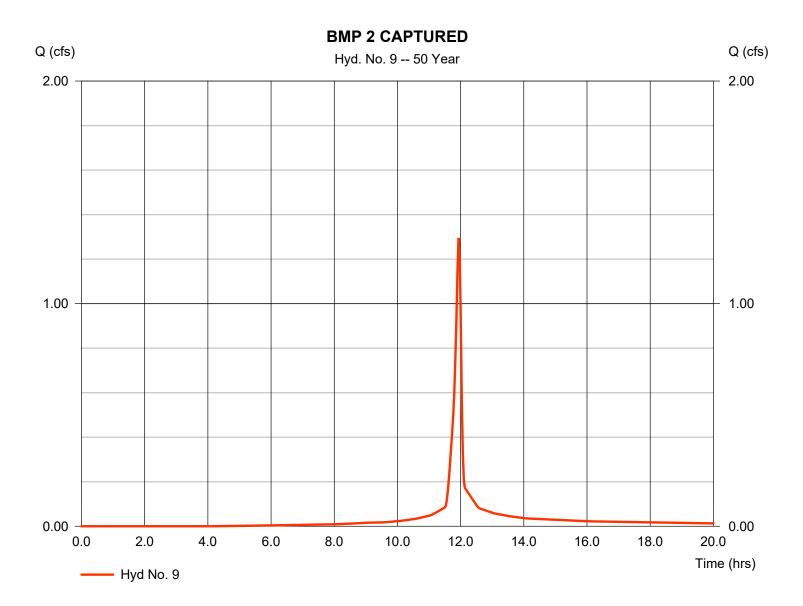

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 1.019 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 2,943 cuft
Inflow hyd. No.	= 6 - BMP 1 CAPTURED	Max. Elevation	= 474.66 ft
Reservoir name	= BMP 1	Max. Storage	= 3,334 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



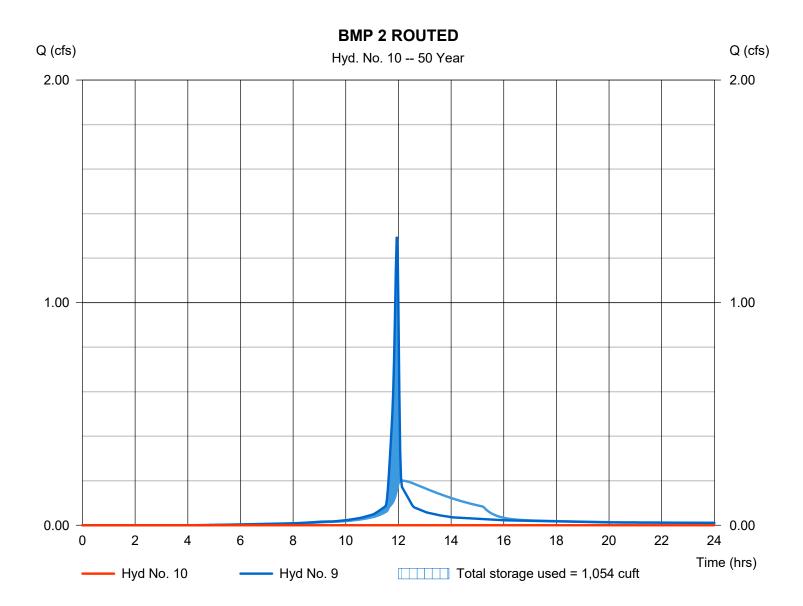
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.295 cfs
Storm frequency	= 50 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 2,760 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

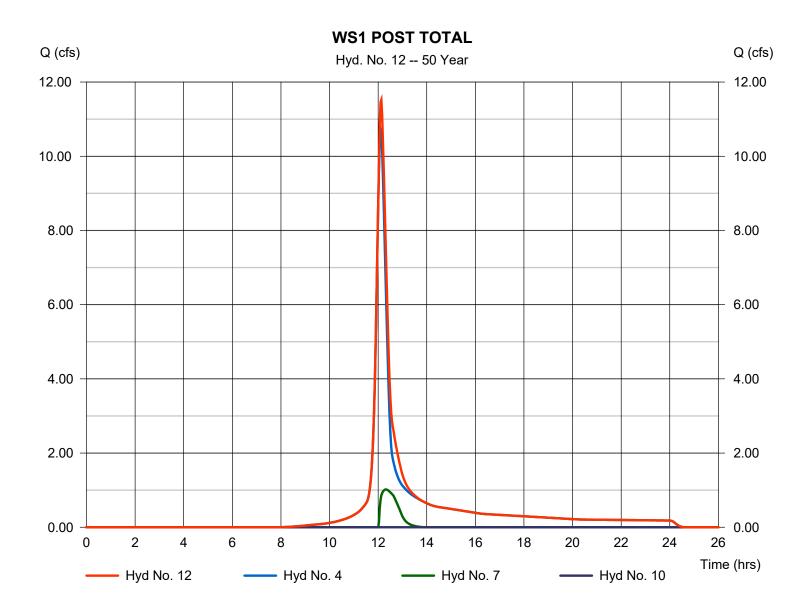

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 50 yrs	Time to peak	= 15.43 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 470.93 ft
Reservoir name	= BMP 2	Max. Storage	= 1,054 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

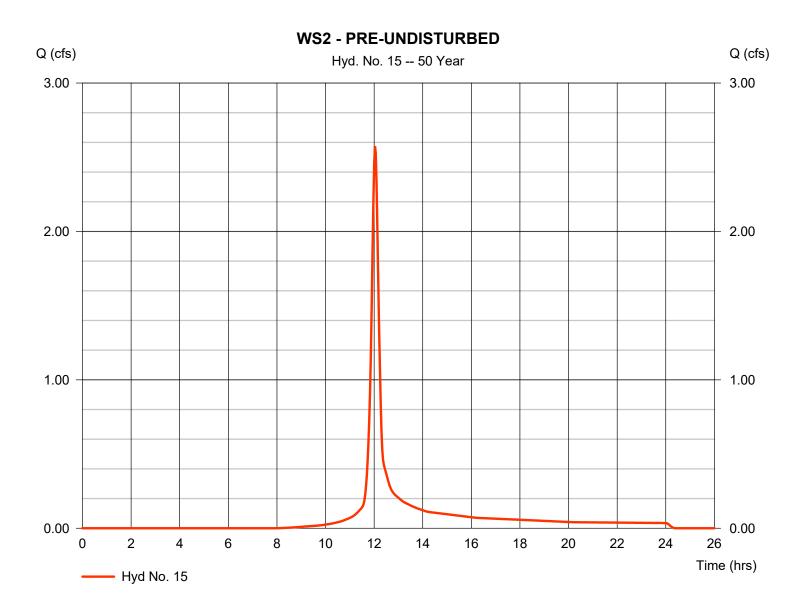


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type	= Combine	Peak discharge	= 11.52 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 40,025 cuft
Inflow hyds.	= 4, 7, 10	Contrib. drain. area	= 2.790 ac

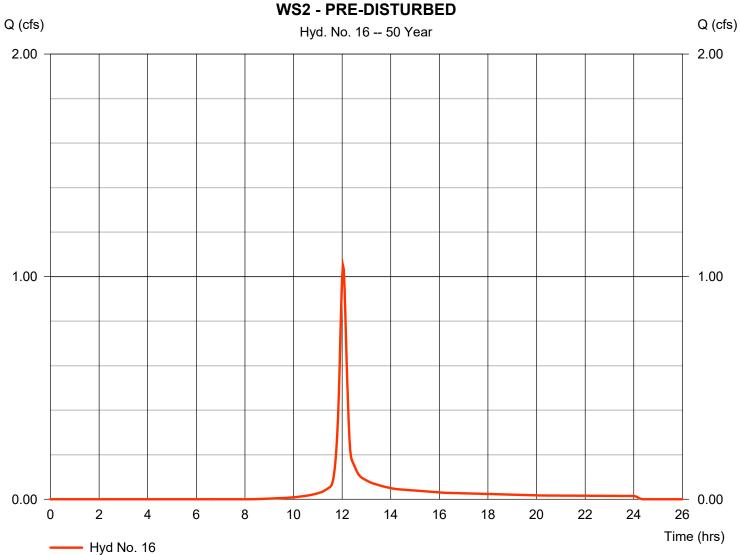

73

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.574 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 7,215 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

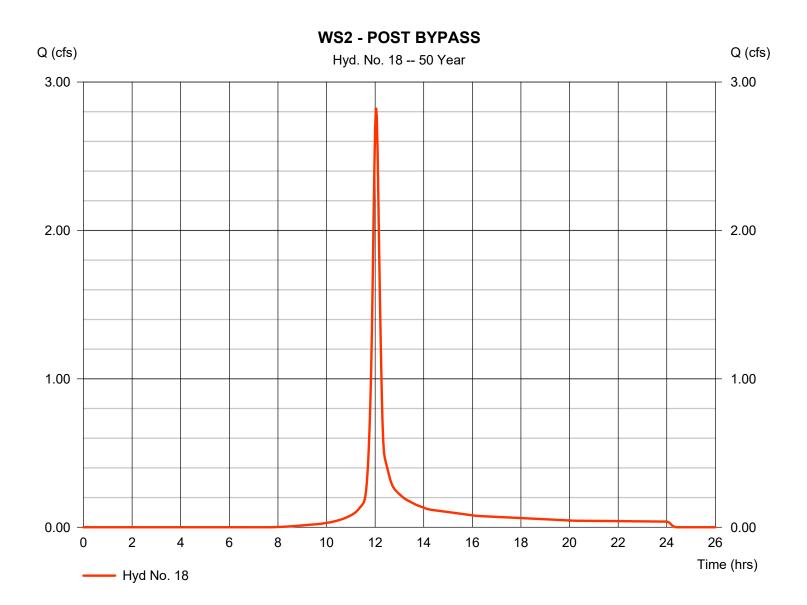

74

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.049 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 2,942 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

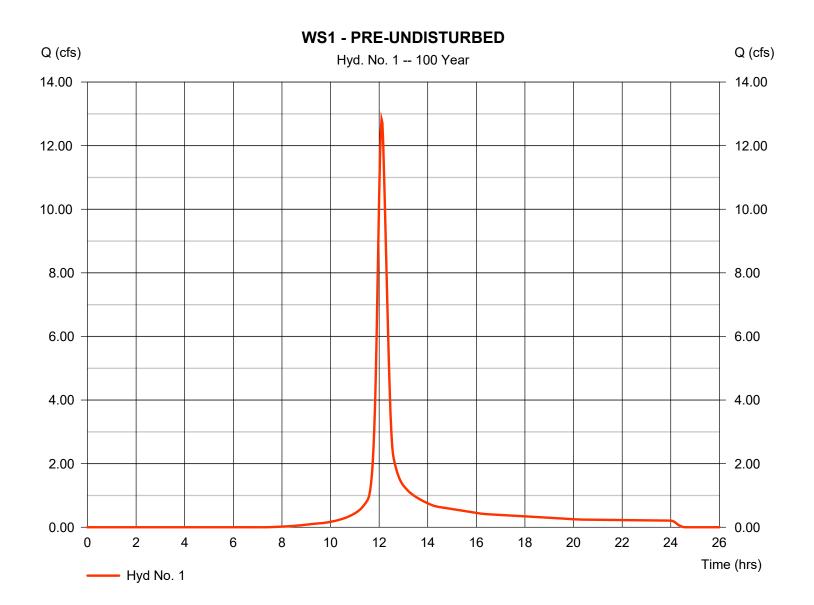
Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 2.826 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 7,922 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 6.69 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

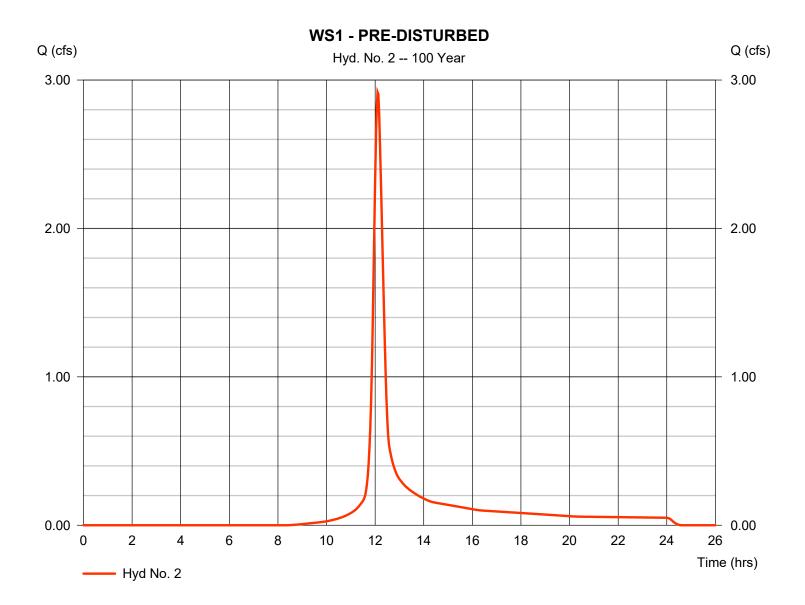

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	12.83	2	726	44,286				WS1 - PRE-UNDISTURBED
2	SCS Runoff	2.919	2	726	10,112				WS1 - PRE-DISTURBED
4	SCS Runoff	13.10	2	726	45,229				WS1 - POST BYPASS
6	SCS Runoff	3.845	2	724	12,062				BMP 1 CAPTURED
7	Reservoir	1.184	2	740	4,178	6	475.45	4,056	BMP 1 ROUTED
9	SCS Runoff	1.507	2	716	3,242				BMP 2 CAPTURED
10	Reservoir	0.000	2	668	0	9	471.48	1,251	BMP 2 ROUTED
12	Combine	14.04	2	726	49,407	4, 7, 10,			WS1 POST TOTAL
15	SCS Runoff	3.139	2	722	8,806				WS2 - PRE-UNDISTURBED
16	SCS Runoff	1.285	2	722	3,604				WS2 - PRE-DISTURBED
18	SCS Runoff	3.435	2	722	9,642				WS2 - POST BYPASS
117	/11 (SCS onl	y).gpw			Return	Period: 100	Year	Wednesda	y, 01 / 10 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

WS1 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 12.83 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 44,286 cuft
Drainage area	= 2.760 ac	Curve number	= 71.9
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

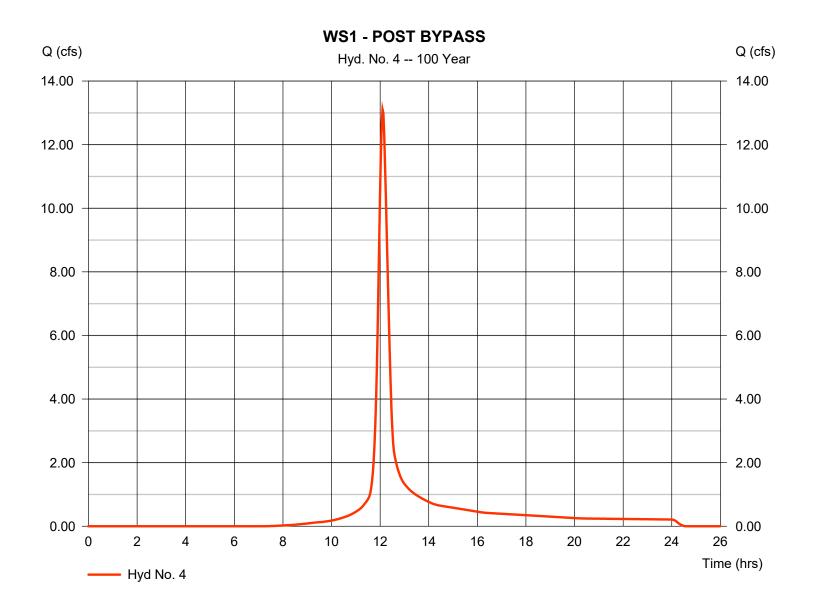

78

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

WS1 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 2.919 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 10,112 cuft
Drainage area	= 0.700 ac	Curve number	= 68
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

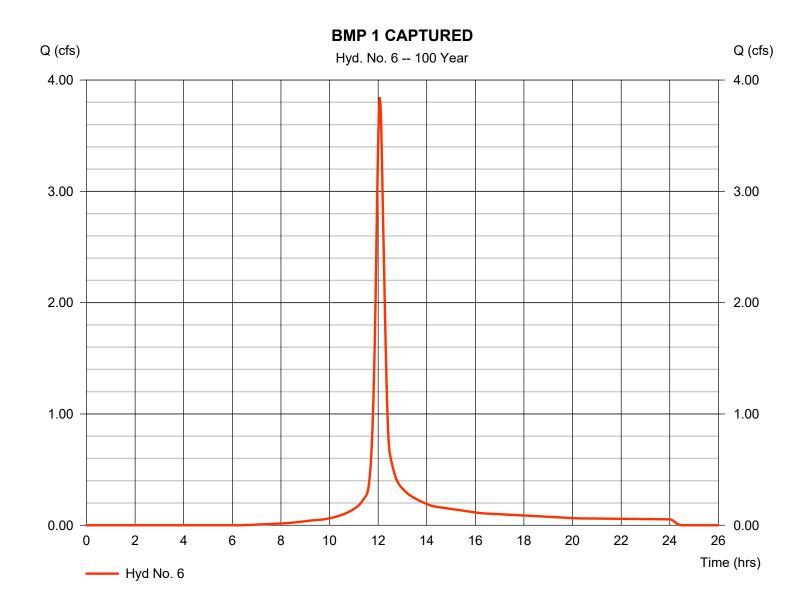

79

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

WS1 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 13.10 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 45,229 cuft
Drainage area	= 2.790 ac	Curve number	= 72.3
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.30 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

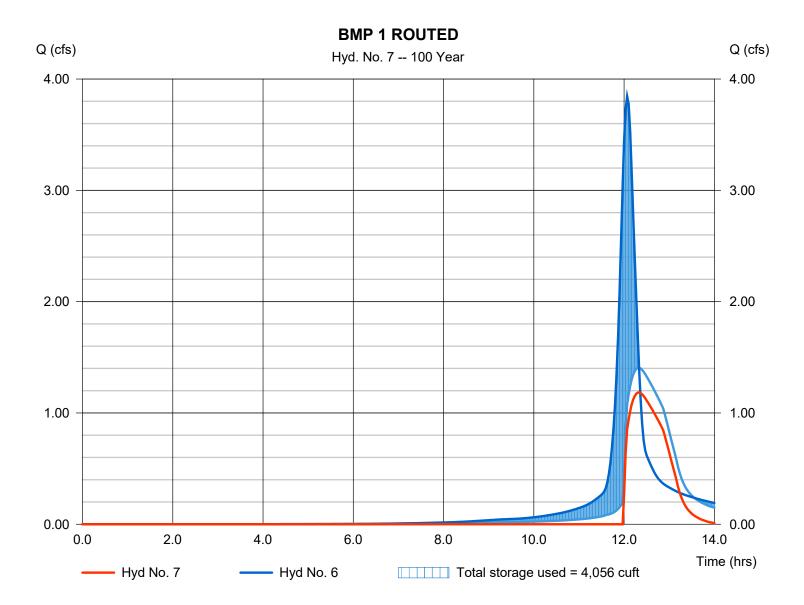
Hyd. No. 6

BMP 1 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 3.845 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 12,062 cuft
Drainage area	= 0.690 ac	Curve number	= 76.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.60 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

81

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

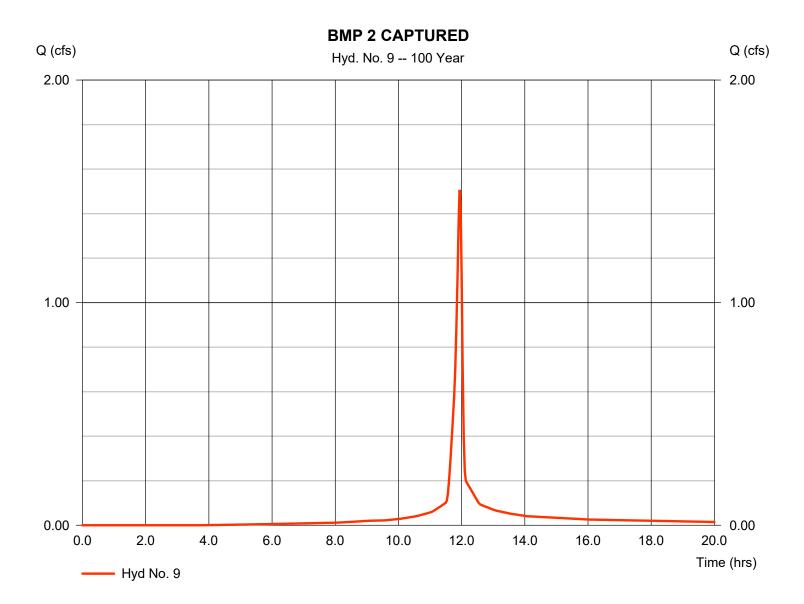

Wednesday, 01 / 10 / 2024

Hyd. No. 7

BMP 1 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 1.184 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 4,178 cuft
Inflow hyd. No.	= 6 - BMP 1 CAPTURED	Max. Elevation	= 475.45 ft
Reservoir name	= BMP 1	Max. Storage	= 4,056 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



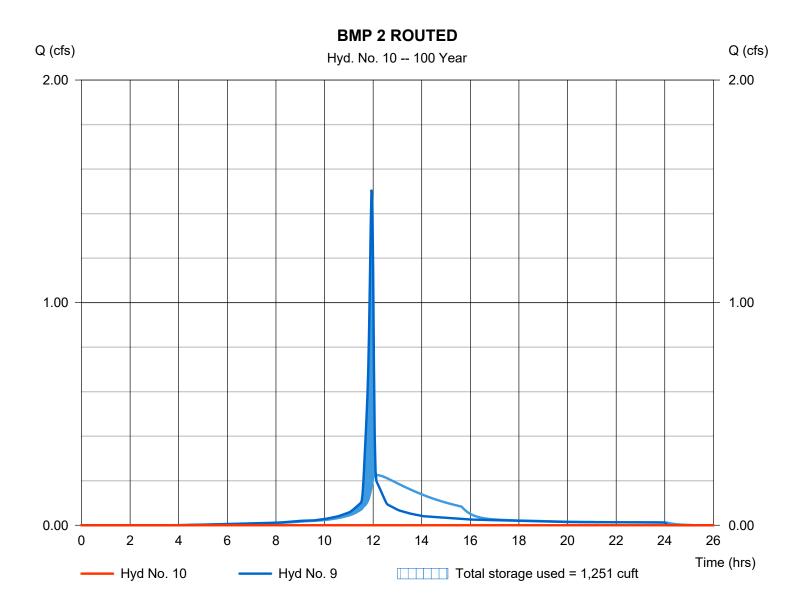
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

BMP 2 CAPTURED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.507 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 3,242 cuft
Drainage area	= 0.160 ac	Curve number	= 86
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

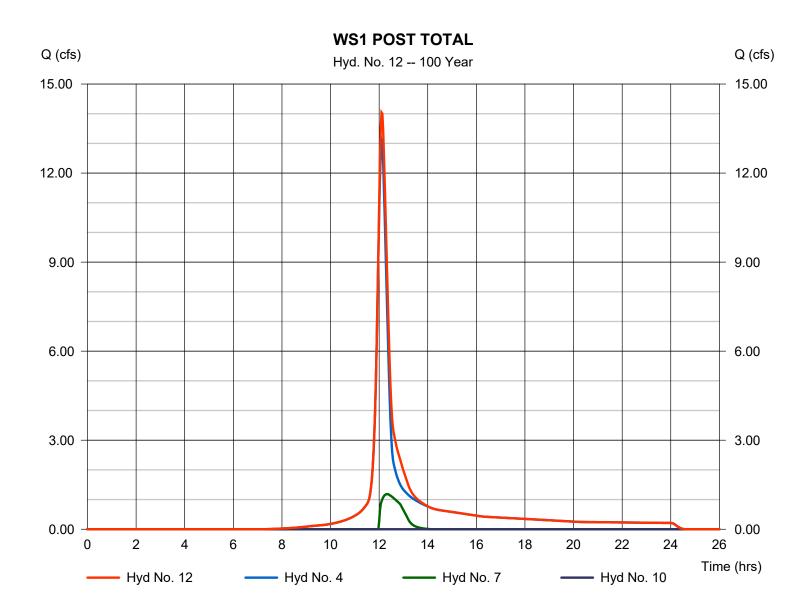

Wednesday, 01 / 10 / 2024

Hyd. No. 10

BMP 2 ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.13 hrs
Time interval	= 2 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 9 - BMP 2 CAPTURED	Max. Elevation	= 471.48 ft
Reservoir name	= BMP 2	Max. Storage	= 1,251 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

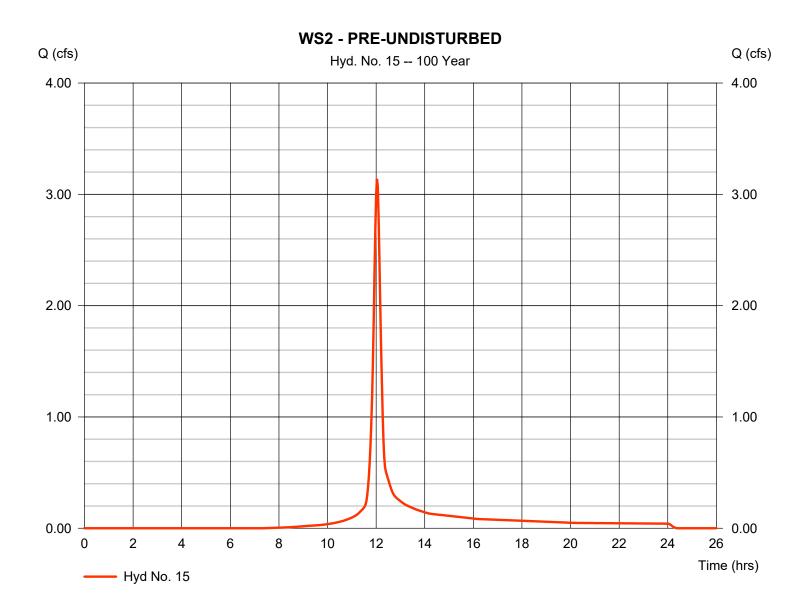


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

WS1 POST TOTAL

Hydrograph type	= Combine	Peak discharge	= 14.04 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 49,407 cuft
Inflow hyds.	= 4, 7, 10	Contrib. drain. area	= 2.790 ac

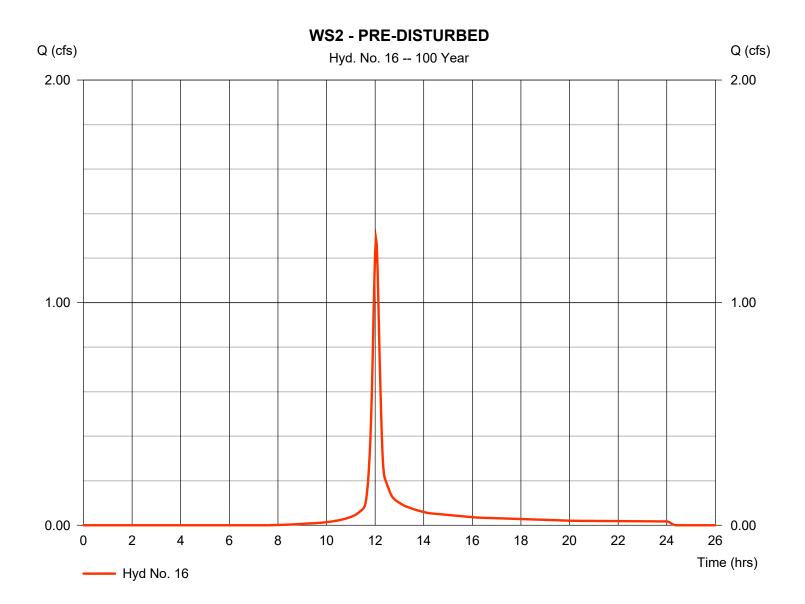


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

WS2 - PRE-UNDISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 3.139 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 8,806 cuft
Drainage area	= 0.570 ac	Curve number	= 72.1
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

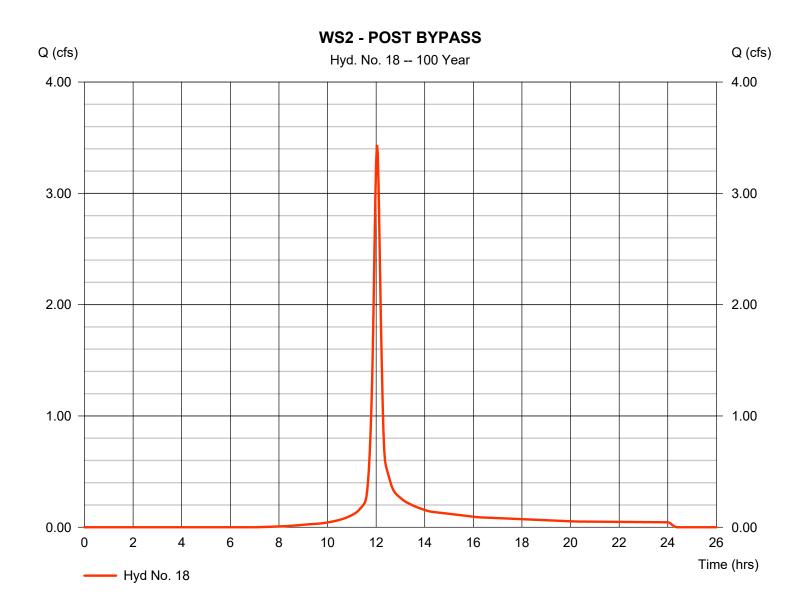


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 16

WS2 - PRE-DISTURBED

Hydrograph type	= SCS Runoff	Peak discharge	= 1.285 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 3,604 cuft
Drainage area	= 0.240 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 18

WS2 - POST BYPASS

Hydrograph type	= SCS Runoff	Peak discharge	= 3.435 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 9,642 cuft
Drainage area	= 0.610 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.50 min
Total precip.	= 7.61 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

